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Abstract 
 In this study, a lumped parameter model that properly simulates the impedance characteristics 

at the extremity of a uniform, isotropic, homogeneous rod on a viscoelastic medium is proposed. 
The lumped parameter model consists of springs, dashpots, and so called “gyromass elements”. 
The gyromass elements generate a reaction force proportional to the relative acceleration of the 
nodes between which they are placed. This model consists of units arranged in series, each unit 
consisting of a spring, a damper, and a gyromass element arranged in parallel. A formula is 
proposed for determining the properties of the elements in the units calculated from a closed-
form solution based on a modal expansion. The impedance function simulated by the proposed 
model shows good agreement with the rigorous impedance function derived from the differential 
equation of motion of the rod. The results obtained by employing this model in some example 
applications show that the accuracy of the model is appreciably high when compared with 
conventional finite element models. A great advantage of this model is that a significant reduction 
of the number of degrees of freedom can be achieved for solving recent vibration problems with 
high-frequency excitations, such as ultrasonic vibrations. 
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1. Introduction 

Structures such as industrial machines, water ducts, massive slabs, bridges etc. are often 
connected or supported by uniform rods resting on viscoelastic media. In principle, various 
vibrations occur in rods, such as tension, shear, and torsion, interacting with the viscoelastic 
medium due to the vibration of the structure attached to them. In this case, each rod behaves as a 
dynamic stiffness and a damping at the end where it connects with the vibrating structure (in this 
study, called “interface”). Generally, the dynamic stiffness and damping characteristics are 
represented by a so called “impedance function”. 

A number of studies associated with impedance functions have been conducted for several 
decades. In a pioneer study, Novak [1] investigated an elastic rod embedded in a homogeneous 
medium modeled as a Winkler medium resisting the rod motion using continuously-distributed, 
frequency-independent springs and dashpots. For more a realistic representation of the subgrade 
reaction of the medium in the model, frequency-dependent springs and dashpots proposed by 
Baranov [2] were incorporated into several studies (Novak [3], Novak and Howell [4], Novak et 
al. [5], Gazetas and Makris [6]). These studies showed that the impedance functions of rods 
connecting with springs and dashpots have frequency-dependent characteristics; namely, the 
stiffness and damping change due to a change in the excitation frequency at the interface. 

In actuality, however, frequency-dependent impedance characteristics have been a serious 
hindrance in numerical computations for obtaining the dynamic response of structures connected 
with rods when material nonlinearities such as cracking, yielding, and collapse of vibrating 
structures occur. 

Lumped parameter models (LPMs) are powerful tools for solving this problem (Barros and 
Luco [7], Wolf [8, 9], Wu and Lee [10], and Andersen [11]). In general, LPMs consist of springs, 
dashpots, and masses. A particular combination of elements allows simulation of a frequency-
dependent impedance characteristic, even though each element has a frequency-independent 
coefficient. It is apparent, therefore, that the LPMs can easily be incorporated into a conventional 
numerical analysis in the time domain, even under nonlinear conditions. Furthermore, in recent 
work by Saitoh [12], a newly developed element called a “gyro-mass” was incorporated into an 
LPM for a more accurate representation of frequency-dependent impedance functions with a 
small number of elements, instead of using a general mass. The gyromass element generates a 
reaction force proportional to the relative acceleration of the nodes between which it is placed. 
The study showed that an LPM with the gyro-mass (GLPM) accurately simulated impedance 
functions showing complicated oscillations with frequency. 

There have been a number of studies dealing with longitudinally vibrating elastic rods with 
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various boundary conditions (e.g., Hizal and Gürgöze [13], Gürgöze and Inceoğlu [14], Li et al. 
[15], Candan and Elishakoff [16], Yüksel and Gürgöze [17], and Erol and Gürgöze [18]). Hizal 
and Gürgöze [13] proposed an LPM of a longitudinally vibrating elastic rod with a viscous 
damping element placed at the intermediate span. Their LPM can be used to represent the 
impedance characteristic at the extremity of the rod when connected with a vibrating structure. 
However, to the best of the author’s knowledge, only a limited number of studies on LPMs 
associated with rods have been presented despite their usefulness in various technological 
applications. 

Here, a GLPM representing the impedance function at the interface of the mechanical system 
shown in Fig. 1, which is a longitudinally vibrating elastic rod resting on continuously-
distributed springs and dashpots (the Kelvin–Voigt model is assumed as a viscoelastic medium), 
is presented. One end of the rod is assumed to be connected with a spring, in accordance with 
actual rods frequently employed in a wide range of applications. It is apparent that, in principle, 
the GLPM derived here is also applicable to other vibrating modes of rods deformed in 
transverse shear and torsion, respectively. The objectives of this study are: 1) To formulate a 
GLPM with gyro-mass elements by means of a closed-form solution of the impedance function 
based on a modal expansion; 2) to verify the accuracy of the proposed GLPM compared with a 
rigorous solution and conventional finite element models (FEMs) in the frequency domain 
through two example applications; and 3) to show an advantage of the proposed GLPM for 
recent vibration problems where an extremely high-frequency region, such as ultrasonic 
excitations, is dealt with: a significant reduction of the number of degrees of freedom (DOFs) for 
representing the impedance function of rods can be achieved. 

 
 
 

2. Formulation of Rigorous Solution and GLPM Based on Modal Expansion 

 

2.1. Formulation of Rigorous Solution 

The mechanical system to be studied is shown in Fig. 1. A uniform, isotropic, homogeneous, 
elastic, horizontal rod of cross-sectional area A  is supported by continuously-distributed springs 
and dashpots. One end of the rod is longitudinally restrained by a spring bk . A one-dimensional 
coordinate system z  is assumed. An external force )exp(0 tiP ω  is applied to the rod at the free 
end, where ω  is the circular frequency of the external force. The length of the rod is l . The 
governing equation of motion is 
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( ) ( ) ( ) 0,,, =−−′′ ∗ tzuktzuAtzuEA &&ρ ,                                          (1) 

 
where the dots and primes denote partial derivatives with respect to time t  and position 
coordinate z , respectively. E  and ρ  are the elastic modulus and mass density, respectively, and 

u  is the displacement of the rod. ∗k  is a unit of a spring k  and a dashpot c  per unit length 
arranged in parallel, according to the Kelvin–Voigt model (i.e., cikk ω+=∗ ). The boundary 
conditions of the rod are expressed in the following form: 
 

at :0=z      tiePuEA ω
0−=′ ,                                                   (2) 

 
at :lz =      0=+′ ukuEA b .                                                   (3) 

 
The general solution of Eq. 1 is 
 

( ) ( ) tizz eeAeAtzu ωλλ −+= 21, .                                              (4) 
 
Substituting Eq. 4 into Eqs. 2 and 3 gives the constants 1A  and 2A  in terms of λ  as follows: 
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where 

EA
Ak 2ωρ

λ
−

=
∗

.                                                      (7) 

 
Substituting 0=z  into Eq. 4 gives the response displacement at the interface of the rod as 
follows: 
 

( ) tieutu ω=,0 ,                                                            (8) 
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where 
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Consequently, dividing the external force tieP ω
0  by the amplitude of the response displacement 

tieu ω  yields the impedance function at the interface, ∗K , as follows: 
 

∗∗ = KkK 0 ,                                                           (10) 

 
where 0k  is the static stiffness at the interface of an isolated rod without springs and dashpots 
distributed along the rod, given by 
 

l
EAk =0 .                                                             (11) 

 
Here, the impedance function normalized by the static stiffness 0k  (hereinafter, called the 
“normalized impedance function”) is expressed as follows: 
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Here, )( ρEc p = is the velocity of the wave propagation along the rod, and 0a ( pclω= ) is the 

normalized frequency. 
It is apparent that the rigorous impedance function at the interface of the rod is frequency-

dependent because Eq. 12 is a function of the excitation frequency ω . 
 

2.2. Formulation of Solution Based on Modal Expansion 

Modal expansion techniques are other methodologies to solve this problem. Here, the following 
governing equation of motion is to be solved: 
 

( ) ( ) ( ) ( ) tiezPtzuktzuAtzuEA ωδρ 0,,, −=−−′′ ∗&& .                               (13) 

 
In the present study, an approximate modal expansion method is used to obtain the relation 
between the harmonic external force and the response displacement at the interface. In this 
method, the mode shapes of a solitary rod without the restriction of the springs and dashpots 
along the rod are used to express the response displacement of the rod satisfying Eq. 13. This 
method was pioneered by Tajimi [19] and Nogami and Novak [20] and has been quite 
successfully used for solving the response displacement of rods embedded in an elastic 
continuum. 

The partial differential equation for determining the mode shapes of the solitary rod is as 
follows: 
 

( ) ( ) 0,, =−′′ tzuAtzuEA &&ρ .                                               (14) 
 
The following response displacement of the rod is assumed: 
 

( ) tiz eetzu ωβ=, .                                                       (15) 
 
Substituting Eq. 15 into Eq. 14 leads to the following general solution: 
 

( ) ti
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Eq. 16 satisfies the following boundary conditions: 
 

at :0=z      0=′uEA ,                                                          (17) 
 

at :lz =      0=+′ ukuEA b .                                                 (18) 
 
Substituting Eq. 16 into Eqs. 17 and 18 leads to 
 

( ) ∑
∞

=

⋅=
1
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i
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p

i
i ez

c
Dtzu ωω

,                                             (19) 

 
where iω  satisfies 
 

i

b
i a

s
a =tan ,                                                           (20) 

 
where 

p

i
i c

l
a

ω
= . 

 
The modal coefficients iD  are determined by substituting Eq. 19 into Eq. 13. Consequently, the 
following general solution of the displacement of the rod satisfying Eq. 13 can be obtained: 
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Accordingly, the normalized impedance function at the interface of the rod ( 0=z ) can be 
obtained from Eq. 21: 
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2.3. Formulation of LPM with Gyro-Mass (GLPM) 

Based on Eq. 22, the impedance function of the rod can also be expressed as follows: 
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From Eq. 23, it is found that the impedance function can be formulated by a set of units 

arranged in series, each unit consisting of a spring iK , a dashpot iC , and a so-called gyro-mass 

element iM  arranged in parallel, as shown in Fig. 2. The case shown in the figure, where the 

maximum number of units is N , is described by an approximation of the infinite series in Eq. 23. 
It is apparent that the number N  is identical to the maximum number of modes to be considered 

in the LPM. Although the element iM  has the same dimension as ordinary mass, the element 

should generate a reaction force proportional to the relative acceleration of the two nodes 
between which it is placed. This gyro-mass element was first proposed and initially used for 
expressing frequency-dependent impedance functions by Saitoh [12]. Fig. 3 (a) shows one of the 
mechanical analogies described in his paper for realizing the gyro-mass. He explained this 
analogy as follows. The mechanical analogy consists of a rotational disk and a massless rod 
attached to the disk with strong friction. The disk rotates with rotational acceleration θ&&  as an 
external force F is given to the rod. The relative acceleration of the rod u&&  with respect to the 
fixed node at the right-hand side is geometrically related to the rotational acceleration θ&& . 
Consequently, the following relation between the external force F and the relative acceleration u&&  
can be obtained: 

 

uMF &&= ,                                                                 (24) 

where 

2r
JM = .                                                                    (25) 

 

Here, r  is the distance from the center of the disk to the point where the rod is attached; J  is the 
moment of inertia of the disk; and M  is the gyro-mass generated by the rotation of the disk. 
Thus, the reaction force at the left-hand side of the rod is identical to the product of the gyro-mass 
M  and the relative acceleration u&& . This is the reason why M  is termed “gyro-mass”, in order to 
distinguish it from ordinary mass. In addition, an LPM using the gyro-mass instead of a general 
mass is called a “GLPM” in the present study. 
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3. Verification of GLPM in Example Applications 

 

The effectiveness of the GLPM is verified through two example applications. First, the 
impedance functions of the GLPM are compared with the rigorous impedance functions obtained 
by Eq. 12. Second, the degree of accuracy of the GLPM is compared with that of two types of 
conventional FEMs: one is an FEM where the mass of the rod is constructed based on a lumped 
mass approach (called “FEML” in the following); the other is an FEM where the mass of the rod 
is constructed based on a consistent mass approach (called “FEMC” in the following). 

 

3.1. Formulation of Conventional FEMs 

A mechanical system of the FEMs is shown in Fig. 4. The rod is discretized by a set of rod 
elements. The stiffness matrix for each rod element can be generally described by the following 
formula (e.g. Thomson [21]): 

 

[ ] ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
−=

11
11

1 0knk ji                                              (26) 

 
 
where n  is the total number of DOFs; and i  and j are the numbers of successive nodes in the 
model. The mass matrices for the elements based on a lumped mass approach and a consistent 
mass approach are expressed by the following formulae (e.g., Thomson [21] and Tedesco et al. 
[22]), respectively: 
 

for FEML: [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

=
210

021
1n

Almij
ρ .                                   (27) 

 

for FEMC: [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

=
3161
6131

1n
Almij
ρ .                                   (28) 

 
A unit consisting of a spring sk  and a dashpot sc  representing a viscoelastic medium, is 
connected at the nodes of the models. They are given by 
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At ends ( 1≠n ) 
 
Intermediate nodes ( 2,1≠n ) 
 

1=n  

(29) 

At ends ( 1≠n ) 

 

Intermediate nodes ( 2,1≠n ) 

 

1=n  

(30) 
                       

A harmonic force is applied at the free end, and then the response displacement is estimated by 
solving the equations of motion of the FEMs. 
 
 

3.2. Verification of GLPM 

In this section, two example applications are considered for verifying the accuracy of the GLPM 
proposed in the present study. The first example deals with the normalized properties that may be 
comparable to those of anchors supporting industrial machinery, such as electrical generators, 
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turbines, and inverters. Anchors are sometimes embedded in holes filled with viscoelastic 
material for absorbing the kinetic energy originating from the machinery, as well as for properly 
supporting the machinery. The normalized properties used in this example are: 8.0=ks ; 

4.0=cs ; and 2.0=bs . 
Fig. 5 shows a comparison of the real part of the impedance functions obtained from the 

rigorous solution and the GLPM results with different numbers of units ( ,4,2,1=N and 8 ). It is 
found that the rigorous impedance function of this example shows sharp local minima and 
maxima repeatedly with frequency. Fig. 5 indicates that increasing the number of units used in 
the GLPM tends to appreciably improve the agreement with the rigorous impedance function. 
The imaginary part (Fig. 6) also shows a tendency similar to the real part. The results obtained 
by using the FEMs with different numbers of DOFs ( ,4,2,1=n and 8 ) are also plotted in the 
figures for comparison. The results indicate that they tend to show smaller absolute values of the 
local minima and maxima in both the real and imaginary parts than the rigorous impedance 
function. The results also show that the frequencies corresponding to the local minima and 
maxima in the impedance functions evaluated by the FEML tend to be smaller than those 
evaluated by the rigorous solution, whereas the frequencies evaluated by the FEMC tend to shift 
to values larger than those evaluated by the rigorous solution. It is found that the impedance 
functions of the GLPM show better agreement with the rigorous solutions of these conventional 
FEMs. It is noteworthy that, despite the better accuracy of the GLPM, the number of elements 
used in the GLPM is always smaller than that of the conventional FEMs in these comparisons. 

The second example deals with the normalized properties associated with those of shear keys 
embedded in bases for resisting shear forces transmitted from machines, such as transmissions 
and gear boxes, for instance. Shear keys made of engineering plastic materials (e.g., POM, 
PMMA, and ABS etc.) are embedded in metallic bases, for example, aluminum alloy plates. In 
this example, shear deformation dominates in the transverse direction of a rod (shear key) as a 
shear force is applied to the end of the rod, as shown in Fig. 7. Therefore, springs and dashpots 
along the rod resist the deformation in the transverse direction, whereas the spring at the end of 
the rod also resists the movement in the same direction. The normalized properties used in this 
example are: 7=ks ; 1.2=cs ; and 7.0=bs . 

Figs. 8 and 9 show that the impedance functions obtained from the rigorous solution in this 
example moderately oscillate with frequency owing to the larger effects of the springs and 
dashpots along the rod than those in the first example. The accuracy of the impedance functions 
of the GLPM tend to be improved gradually from the lower frequency region to the higher 
frequency region by increasing the number of units from 1=N  to 16 . The reason for this is that 
each unit of the GLPM is directly associated with a particular mode: the modes arrayed from 
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lower frequency to higher frequency as expressed in Eq. 23. Accordingly, the accuracy of the 
impedance functions is improved from the lower frequency with an increasing number of units. 
This tendency can also be seen in the first example.  

In contrast, the accuracy of the FEMs tends to be improved gradually over a wide frequency 
range by increasing the number of DOFs from 1=n  to 16 . The results show that marked 
differences in the frequencies corresponding to the local maxima and minima still remain in the 
case of 16=n , as well as differences in the amplitude of oscillations in the impedance functions. 
From this example, it may also be concluded that the GLPM shows better agreement with the 
rigorous solution than the conventional FEMs. 

 
 

4. Advantages of GLPMs for Recent Vibration Problems 
 

In recent vibration problems, excitations with extremely high frequencies are often dealt with, 
such as ultrasonic vibrations exceeding 20 kHz induced by ultrasonic machines, such as servo-
cutters, welding machines, and micro turbines. It is known that the maximum frequency of 
ultrasonic vibrations that recent technologies can generate is of gigahertz order. Moreover, in 
certain vibration problems, such as high-speed moving bullet trains interacting with rails on 
structures, kilohertz-order vibrations need to be considered in numerical computations. In 
general, rods incorporated into systems excited by high frequencies need to have a large number 
of DOFs for expressing their deformed shapes during excitation. Therefore, there is a strong 
demand for an appropriate and effective representation of rods interacting with machines and 
structures in high-frequency regions for efficient computation.  

In general, a particular high-frequency region is rather more important than other frequency 
regions when solving such problems where the variance of excitation frequencies is small. It is 
well-known that modal analysis has been frequently applied for solving various dynamic 
problems where a particular frequency region is dealt with because of the fact that a small set of 
modes associated with the frequency region can appropriately express the dynamic characteristics 
of vibrating systems. In accordance with the advantage of modal analysis, a great advantage in 
appreciably reducing the number of DOFs of GLPMs is the fact that the units comprising the 
GLPMs are associated with the vibrating modes of the rod. In the following discussion, therefore, 
we attempt to reconstruct GLPMs where a set of selected units associated with modes in a target 
frequency region are used without using all modes.  

Fig. 10 shows the impedance functions obtained from the GLPMs using different maximum 
numbers of units (N=100 and 200) in the first example previously shown, targeting a high-
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frequency region ranging from 400 =a  to 50 . The results obtained by using the FEMC with 
different numbers of DOFs (n=100 and 200) are also plotted in the figures for comparison. Fig. 
10 indicates that 200 DOFs appropriately represent the impedance functions in the target 
frequency region for the GLPM and the FEMC, respectively.  

Fig. 11 shows a comparison of the impedance functions evaluated using three reduced 
GLPMs (RGLPMs): 1) a RGLPM consisting of four units associated with successive modes from 
14th to 17th ranging from =0a 40.85 to 50.27; 2) a RGLPM consisting of 10 units associated 
with modes from 12th to 21st ranging from =0a 34.56 to 62.84; and 3) a RGLPM consisting of 
16 units associated with successive modes from 10th to 25th ranging from =0a 28.28 to 75.40.  

The results indicate that, as a whole, the impedance functions of all the presented RGLPMs 
show good agreement with those of the rigorous solution within the target frequency region 
( 400 =a  to 50 ), whereas discrepancies remain around the local minima and maxima in the 
impedance functions of the RGLPM with four units. Fig. 11 shows that an appreciably close 
agreement can be seen in the RGLPM using 10 units, whereas more accurate impedance 
functions can be achieved using the RGLPM with 16 units. Therefore, a set of bounded modes 
associated with a comprehensive frequency region is necessary to consider in RGLPMs for 
accomplishing satisfactorily high accuracy. That is, in this example, the minimum frequency 
( =0a 28.28) of the comprehensive frequency region is about 0.7 times as small as the minimum 
frequency ( =0a 40) of the target frequency region; and the maximum frequency ( =0a 75.40) is 
about 1.5 times as large as the maximum frequency ( =0a 50) of the target frequency region.  

It may be concluded, therefore, that RGLPMs appreciably reduce the DOFs of GLPMs: the 
DOFs of RGLPMs are markedly smaller than those of the conventional FEMs; hence, the 
computational domain and time can also be efficiently reduced using RGLPMs for solving recent 
vibration problems with high excitation frequencies. 

 
 
 

5. Conclusions 

 

This study proposes a lumped parameter model (LPM) that properly simulates the impedance 
characteristics at the extremity of a uniform, isotropic, homogeneous rod supported by 
continuously-distributed springs and dashpots (the Kelvin–Voigt model is assumed as a 
viscoelastic medium). An LPM with a so called “gyro-mass” (GLPM) is formulated by means of 
a closed-form solution of the impedance functions based on a modal expansion. The accuracy of 
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the GLPM is verified by comparison with the rigorous solution and conventional FEMs in the 
frequency domain through two example applications. The results of the GLPM are in better 
agreement with the rigorous solution than those of the conventional FEMs despite the smaller 
number of elements in the GLPM compared with the FEMs. Moreover, reduced GLPMs 
(RGLPMs) are presented for representing impedance functions in a high-frequency region. 
RGLPMs appreciably reduce the number of degrees of freedom when compared with 
conventional FEMs so that the computational domain and time can also be efficiently reduced 
when solving recent vibration problems such as those involving ultrasonic vibrations. 
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Fig. 1 Rod on viscoelastic medium considered in this study. 
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Fig. 2 Lumped parameter model (LPM) for simulating impedance function at the interface of a 

rod on a viscoelastic medium. 
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Fig. 3 Mechanical analogy of gyromass element (a) and its symbol (b), proposed by Saitoh 2007 

(revised in parts). 
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Fig. 4 Conventional finite element models (FEMs) studied ( =i node number). 
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Fig. 5 Normalized impedance functions (real part) at the interface of a rod in the example 
application of anchors supporting vibrating machinery, using the GLPM with various maximum 
numbers of units (N). Also shown for comparison are results obtained with the rigorous solution 
and with conventional finite element models (FEML for lumped mass approach; FEMC for 
consistent mass approach) with various numbers of DOFs (n). 
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Fig. 6 Normalized impedance functions (imaginary part) at the interface of a rod in the example 
application of anchors supporting vibrating machinery, using the GLPM with various maximum 
numbers of units (N). Also shown for comparison are results obtained with the rigorous solution 
and with conventional finite element models (FEML for lumped mass approach; FEMC for 
consistent mass approach) with various numbers of DOFs (n). 
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Fig. 7 Shear rod on viscoelastic medium considered in the second example. 
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Fig. 8 Normalized impedance functions (real part) at the interface of a rod in the example 
application of shear keys resisting movement in the transverse direction, using the GLPM with 
various maximum numbers of units (N). Also shown for comparison are results obtained with the 
rigorous solution and with conventional finite element models (FEML for lumped mass approach; 
FEMC for consistent mass approach) with various numbers of DOFs (n). 
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Fig. 9 Normalized impedance functions (imaginary part) at the interface of a rod in the example 
application of shear keys resisting movement in the transverse direction, using the GLPM with 
various maximum numbers of units (N). Also shown for comparison are results obtained with the 
rigorous solution and with conventional finite element models (FEML for lumped mass approach; 
FEMC for consistent mass approach) with various numbers of DOFs (n). 
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Fig. 10 Normalized impedance functions at the interface of a rod in the previous example 
application of anchors in a high-frequency region, using the GLPM with various maximum 
numbers of units (N=100 and 200). Also shown for comparison are results obtained with the 
rigorous solution and the FEMC (FEM for consistent mass approach) with various numbers of 
DOFs (n =100 and 200).  
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Fig. 11 Partial representation of normalized impedance functions at the interface of a rod in the 
previous example application of anchors in a particular high-frequency region ( 5040 0 ≤≤ a ), 
using the RGLPMs (reduced GLPMs) with various combinations of units associated with 
selected successive modes ranging from p-th mode to q-th mode. 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 


