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Equivalent One-Dimensional Spring-Dashpot System 
Representing Impedance Functions of Structural Systems with 

Non-Classical Damping 

M. Saitoh1 

Abstract   This paper describes the transformation of impedance functions in general 
structural systems with non-classical damping into a one-dimensional spring-dashpot 
system (1DSD). A transformation procedure based on complex modal analysis is 
proposed, where the impedance function is transformed into a 1DSD comprising units 
arranged in series. Each unit is a parallel system composed of a spring, a dashpot, and a 
unit having a spring and a dashpot arranged in series. Three application examples are 
presented to verify the applicability of the proposed procedure and the accuracy of the 
1DSDs. The results indicate that the 1DSDs accurately simulate the impedance functions 
for a spring-dashpot-mass structure, a truss frame structure, and a plate structure. The 
1DSD transformation offers compatibility with complex modal analysis: a large number 
of units associated with high modes beyond a target frequency region can be removed 
from the 1DSDs as an approximate expression of impedance functions. The accuracy of 
the approximated 1DSDs can be improved by incorporating an additional unit associated 
with the residual stiffness that compensates for the effect of high modes. A marked 
decrease in the computational domain size and time with the use of the 1DSDs is of great 
scientific and engineering importance in diverse technological applications. 

Keywords:  Impedance functions, lumped parameter models, one-dimensional spring-
dashpot system, non-classical damping, dynamic response, residual stiffness. 

1 Introduction 

Efficient reduction of degrees of freedom (DOFs) in structural systems is of great 
importance for solving dynamic problems, as numerous degrees of freedom are typically 
used to accurately describe structural systems by using discretized elements such as 
mass-spring elements, rod/beam elements, and isoparametric elements. In particular, a 
proper reduction of the DOFs is strongly demanded for solving dynamic problems where 
structural systems interact with dynamic systems having an extremely large number of 
DOFs, such as vehicles, industrial machines, and robots. In such problems, the total 
number of DOFs is enormous, so the computational domain and time tend to be 
extremely large.  
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The dynamic stiffness method (DSM) has frequently been used to reduce the DOFs in 
structural systems, especially for beam-like structures [e.g., Kolousek (1973), Hizal and 
Gürgöze (1998), Barros and Luco (1990), Wolf (1994, 1997), Wu and Lee (2002)]. Since 
this method was first developed in the early 1940s by Kolousek (1941), it has been 
applied to various vibration analyses and has been appreciably improved to overcome 
difficulties in diverse vibration problems. The global dynamic stiffness generated in the 
DSM procedure and various improved DSMs can be used as reduced systems that 
express the dynamic stiffness or a so-called impedance function at the structural interface 
of the contact point with dynamic systems. 
In general, the reduced systems representing impedance functions transformed by DSMs 
show a significant decrease in the number of DOFs from the original structural systems. 
Most impedance functions are known to show strong frequency-dependent characteristics: 
the real part of the impedance functions represents the stiffness characteristics, whereas 
the imaginary part represents the damping characteristics. The reduced systems are 
applicable to interaction problems whenever the dynamic systems act under linearly 
elastic conditions. However, the use of reduced systems expressed in terms of the 
excitation frequency has presented serious problems when nonlinearities such as slippage, 
separation, cracking, yielding, and collapse occur in the dynamic systems. 
A mechanical representation is one way to break through this problem. Impedance 
functions are generally represented using a lumped parameter model (LPM) comprising 
springs, dashpots, and masses. Although each element has a frequency-independent 
coefficient, a particular combination of elements allows simulation of a frequency-
dependent impedance characteristic. Thus, LPMs can easily be incorporated into a 
conventional numerical analysis in the time domain even under nonlinear conditions in 
dynamic systems. Hizal and Gürgöze (1998) proposed an LPM of a longitudinally 
vibrating elastic rod with a viscous damping element placed mid-span; LPMs for the 
interface of three-dimensional wave propagation continua have been developed (e.g., 
Barros and Luco (1990), Wolf (1994, 1997), Wu and Lee (2002), Andersen (2008), and 
Saitoh (2007)). To the best of the author’s knowledge, however, the number of studies 
proposing LPMs for structural systems is very limited, and LPMs that represent the 
impedance functions in structural systems with general damping have never been 
proposed. 
This study shows that the impedance functions of general structural systems with non-
classical damping can be represented by a one-dimensional spring-dashpot system 
(1DSD); a transformation procedure into 1DSDs is proposed based on conventional 
complex modal analysis. The advantage of this 1DSD representation is comparable to the 
advantage of conventional modal analysis: an approximate expression of the impedance 
functions can be obtained using 1DSDs with an appreciably reduced number of units 
associated with related modes in a target frequency region instead of using a large 
number of units associated with high modes beyond the target frequency region. 
The objectives of this study are: 1) To propose a procedure for formulating 1DSDs using 
complex modal analysis; 2) to verify the accuracy of the transformed 1DSDs compared 
with a direct solution using the original structural systems through three example 
applications to a mass-spring-dashpot structure, a truss frame structure, and a plate 
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structure; and 3) to show an example where the number of DOFs in a 1DSD representing 
the impedance function of a cantilever plate having 240 DOFs can be significantly 
reduced. 

2 Transformations of Impedance Functions in General Structural Systems into 
1DSDs 

2.1  General expressions of impedance functions in structural systems with non-
classical damping based on complex modal analysis 

A structural system comprising N  DOFs is considered. The equations of motion of the 
original structural systems with damping can be generally described by 

[ ]{ } [ ]{ } [ ]{ } { }puKuCuM =++ &&& ,                                                                                    (1) 

where [ ]M , [ ]C , and [ ]K  are the mass matrix, damping matrix, and stiffness matrix, 
respectively, of the original structural systems. Each matrix has the order NN × ; { }u  
and { }p  are the response displacements and the external forces at the nodes, respectively, 
and each vector has the order N . The dots denote partial derivatives with respect to time 
t . In Eq. 1, the mass matrix [ ]M  is symmetric and positive definite; the damping matrix 
[ ]C  and the stiffness matrix [ ]K  are symmetric and non-negative definite, respectively.  
In this study, the damping matrix [ ]C  is assumed to be based on non-classical damping. 
Therefore, Eq. 1 cannot be decoupled using the undamped modal vectors of the structural 
system. In the following, therefore, a well-known procedure based on complex modal 
analysis (e.g., Foss (1958)) is applied to obtain the impedance function of the systems. 
Nagamatsu (1985) described detailed procedures for obtaining the general form of the 
admittance functions (the inverse of the impedance functions) of the structural systems 
based on complex modal analysis. Therefore, in the following, the general impedance 
function in structural systems is derived according to his procedure. 
In complex modal analysis, the following N2  first-order equations are considered 
instead of N  second-order equations of Eq. 1:  

[ ]{ } [ ]{ } { }fzSzR =+& ,                                                                                                     (2) 
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To obtain the homogeneous solution of Eq. 2, let 

{ } { }Φ= tez λ .                                                                                                                   (3) 

This yields 
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[ ] [ ]( ){ } { }0=Φ+ SRλ .                                                                                                    (4) 

The solution of Eq. 4 will yield 2N eigenvalues and eigenvectors nλ  and 

{ } { } { }{ }T
nnnn φλφ=Φ , Nn 2,,2,1 L= . 

For a stable system, each nλ  is either real and negative (this is associated with an over-
damped mode) or complex with a negative real part (this is associated with an under-
damped mode). Each complex eigenvalue nλ  is known to have an eigenvalue nλ  that is 
the complex conjugate of nλ ; the corresponding vector { }nφ  has a vector { }nφ  whose 
components are complex conjugates of those of { }nφ . The eigenvectors { }nΦ  are also 
known to satisfy the following orthogonality relations: 

{ } [ ] { } 0=ΦΦ n
T

m R ,   when nm ≠                                                                                 (5) 

{ } [ ] { } 0=ΦΦ n
T

m S ,   when nm ≠ .                                                                               (6) 

The eigenvectors are assembled compactly into a matrix using diagonal matrices [ ]Ω  and 
[ ]Ω  comprising the eigenvalues nλ  and nλ , respectively, as 
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,                                                                                                (7) 

where 

[ ] { } { } { }[ ]Nφφφφ L21= , 

[ ] { } { } { }[ ]Nφφφφ L21= , 

[ ] [ ]ndiag λ=Ω , Nn ,,2,1 L= , 

[ ] [ ]ndiag λ=Ω , Nn ,,2,1 L= . 

The matrix [ ]Ψ  is called the modal matrix. Non-homogeneous solutions of Eq. 2 can be 
expressed using a modal series based on the orthogonality relations: 

( ){ } [ ] ( ){ }ttz ξΨ= .                                                                                                            (8) 

Here, the new coordinates ( ){ }tξ  are called the modal coordinates. Substituting Eq. 8 
into Eq. 2 and premultiplying the equation by [ ]TΨ  yields 

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { }fSR TTT Ψ=ΨΨ+ΨΨ ξξ& .                                                               (9) 

The orthogonality relations, Eqs. 5 and 6, indicate that [ ] [ ][ ]ΨΨ RT  and [ ] [ ][ ]ΨΨ ST  are 
diagonal matrices. The upper N components of the matrices are denoted as nα  and nβ , 
respectively; the lower N components are complex conjugates of nα  and nβ , 
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respectively, denoted as nα  and nβ . These diagonal matrices [ ] [ ][ ]ΨΨ RT  and 
[ ] [ ][ ]ΨΨ ST  are denoted as [ ]α  and [ ]β , respectively. 
Substituting Eqs. 3 and 8 into the homogeneous equation of Eq. 2 and premultiplying the 
result by [ ]TΨ  clearly yields 

nnn αβλ −= ,                                                                                                               (10) 

nnn αβλ −= .                                                                                                               (11) 

In general, the eigenvalues nλ  and nλ  can be replaced by the expressions 

dnnn iωσλ +−= ,                                                                                                          (12) 

dnnn iωσλ −−= ,                                                                                                           (13) 

where nσ  is the n -th modal decay rate and dnω  is the n -th damped natural circular 
frequency. 

To obtain the impedance functions in structural systems, the harmonic external force 
and harmonic response function are assumed to be 

{ } { } tieFf ω=  or  { } { } tiePp ω= ,                                                                                  (14) 

{ } { } tieZz ω=  or { } { } tieUu ω= ,                                                                                    (15) 

where ω  is the circular frequency and { }F , { }P , { }Z , and { }U  are time-independent 
vectors. In this case, the modal coordinates ( ){ }tξ  in Eq. 8 can be written in the form 

( ){ } { } tiet ωξ Ξ= ,                                                                                                             (16) 

where { }Ξ  is a time-independent vector. 

Substituting Eqs. 14, 15, and 16 into Eq. 2 and premultiplying the result by [ ]TΨ  yields 

[ ] [ ]( ){ } [ ] { }Fi TΨ=Ξ+ βαω .                                                                                       (17) 

Substituting { }Ξ  of Eq. 17 into Eq. 16 and the resultant modal coordinates ( ){ }tξ  into 
Eq. 8 yields 

{ } [ ] [ ] [ ]( ) [ ] { }FiZ TΨ+Ψ= −1βαω .                                                                             (18) 

Eq. 18 can be rewritten using Eq. 7 as 
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Here, [ ]γ  and [ ]γ  are diagonal matrices comprising the diagonal components 
( )nni βωα +1  and ( )nni βαω +1 , respectively. The upper N  equations are extracted 

as follows: 

{ } [ ][ ][ ] [ ][ ][ ]( ){ }PU TT φγφφγφ += .                                                                            (20) 

On the basis of Eq. 20, the admittance function IJH , defined as the ratio of the amplitude 
of the displacement response IU  at the I-th DOF to a force JP  applied at the J-th DOF, 
is expressed as 
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 where nIφ  and nJφ  are the components of the n -th eigenvector at the I-th and J-th 
DOFs, respectively; nIφ  and nJφ  are the complex conjugates of the components nIφ  and 

nJφ , respectively. 
Substituting Eqs. 10–13 into Eq. 21 yields 
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where 
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Accordingly, the impedance function IJS , defined as the ratio of the displacement 
response IU  to the external force JP , is expressed by the inverse of Eq. 22 as 

( ) ( )∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
+

+−
+

===
N

n ndn

nn

ndn

nnIJI

J
IJ

i
iRG

i
iRGHU

P
S

1

11

σωωσωω

.                                (23) 

2.2  Exact procedure for transforming impedance functions into 1DSDs 

To the best of the author’s knowledge, an exact mechanical representation of the 
impedance functions expressed by Eq. 23 has never been reported in the literature. In this 
section, an exact procedure for transforming impedance functions into an equivalent 
1DSD is proposed. 
Instead of dealing with Eq. 23 directly, consider a renewed form comprising coupled 
terms, each created by the combination of the n -th two terms of the denominator in Eq. 
23: 
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The above form can be rewritten as 
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Eq. 25 implies that the impedance functions expressed by Eq. 24 could be transformed 
into a set of units arranged in series, where each unit has an impedance function 
expressed by Eq. 26. Note that a mechanical unit exactly representing the impedance 
function expressed by Eq. 26 could be found serendipitously by changing the 
configurations of the mechanical components. 

In this study, the following mechanical representation for Eq. 26 is proposed: a 
parallel system comprising a spring Tnk , a dashpot Tnc , and a unit having a spring nk  
and a dashpot nc  arranged in series as shown in Fig. 1. The impedance function of the 
proposed system is described by 
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The mathematical form of Eq. 27 is analogous to that of Eq. 26. The equivalency of each 
term of Eq. 26 with those of Eq. 27 yields 

22
dnnTnnTnn cckk ωσ += ,                                                                                              (28) 
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( )ndnnnTnnn RGcck ωσ −= 2 ,                                                                                     (30) 

nTn Gc 21 = .                                                                                                                   (31) 
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Figure 1: (a) One-dimensional lumped parameter model with spring and dashpot 
elements (1DSDs) for simulating the impedance function ( ) IJIJ upS =ω  in general 
structural systems. (b) Unit associated with under-damped mode and (c) unit associated 
with over-damped mode. 
 
Solving the simultaneous equations of Eqs. 28–31 for the springs nk , Tnk  and the 

dashpots nc , Tnc  yields 
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The above results indicate that the properties of the mechanical elements of the units can 
be determined from the modal quantities nσ , dnω , nG , and nR  obtained by a one-time 
complex modal analysis calculation. Fig. 1 shows a 1DSD representing the impedance 
functions of general structural systems. 



CMES: Computer Modeling in Engineering & Sciences, Vol. 67, No. 3, pp. 211-238, 
2010 

2.3  Transformations of impedance functions into 1DSDs with real eigenvalues   
(over-damped modes) 

Eigenvalues nλ  are real and negative when over-damped modes appear. In this case, 
Eqs. 32–35 cannot be used to construct a mechanical unit of impedance functions. When 
an eigenvalue nλ  is real and negative, the second term of the denominator associated 
with the complex conjugates nJnI φφ  in Eq. 23 does not exist. In addition, the imaginary 
part of the eigenvalue is found to be zero, whereas the imaginary part of the eigenvectors 

Inφ  and Jnφ  also becomes zero, which results in 0=nR . Therefore, the impedance 
function associated with over-damped modes is expressed as follows: 

n
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n
nIJ G
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+
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.                                                                                       (36) 

Accordingly, the following spring Tnk and dashpot Tnc  comprise a Kelvin–Voigt unit, as 
shown in Fig. 1c for an over-damped mode. 
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Note that over-damped modes generally appear with even numbers m2  in N2  modes, 
so the total unit number N  in Eq. 25 changes to ( )mNN +=′  when over-damped 
modes exist. 

2.4  Transformations of impedance functions in structural systems with classical 
damping 

Classical damping (proportional damping) is a specific damping system wherein the 
damping matrix is proportional to the stiffness matrix, the mass matrix, or both. In 
transforming the impedance functions of structural systems with classical damping, Eq. 1 
can be decoupled using the undamped modal vectors of the structural systems. The 
decoupling of Eq. 1 by using undamped modal vectors shows that nG  in Eq. 26 becomes 
zero (c.f. Nagamatsu (1985)); hence, Eq. 26 becomes 
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The mathematical form of Eq. 39 is incompatible with that of Eq. 27. This implies that 
the 1DSD proposed here is limited to structural systems with non-classical damping. In 
addition, a damping system that is mostly classical but partially non-classical due to 
additional dashpots, for instance, may generate the particular modes associated with 
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proportional damping. In this case, the proposed 1DSDs are unavailable for the units 
corresponding to the modes.  
A possible technique to transform the systems into a one-dimensional equivalent 
mechanical system would be to change Eq. 39 into the following form: 

ngngngnIJ kicmK ++−= ωω 2 ,                                                                                   (40) 

where 
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Eq. 40 indicates that a unit associated with classical damping can be considered as a 
parallel system consisting of a spring ngk , a dashpot ngc , and an element ngm  having 
the same dimensions as ordinary mass. Herein, the element ngm  should generate a 
reaction force proportional to the relative acceleration of the two nodes between which it 
is placed. This element is termed “gyro mass,” and was first proposed and initially used 
for expressing frequency-dependent impedance functions by Saitoh (2007). Although the 
use of the gyro mass in structural systems with classical damping is beyond the scope of 
this study, this description could be valuable in further studies to solve this problem. 

2.5   Matrix expressions of 1DSDs for numerical computations 

In the matrix representation of 1DSDs proposed above, which is convenient for 
numerical computations, the relationship between the displacements ( e

nw 1− , e
nw , and e

nv ) 
and the external forces ( e

nf 1− , e
nf , and e

ng ) at both ends and at the internal node of a unit 
associated with the n -th mode, as shown in Fig. 1b, can be written as 
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[ ] neK and [ ] neC  are the stiffness matrix and damping matrix, respectively, of a unit 
associated with the n -th mode. Superimposing the stiffness matrices and damping 
matrices of all units gives the simultaneous equations of motion of a 1DSD expressed as 
a matrix. When over-damped modes appear in the systems, a DOF for the internal node 
in the unit and the two connected elements nk  and nc  are removed, as shown in Fig. 1c. 

3 Example Applications 

3.1  Example 1: One-dimensional mass-spring-dashpot system 

Fig. 2 shows a one-dimensional four-DOF mass-spring-damper system. The four masses 
are connected with seven springs and seven dampers as shown in the figure. The numbers 
in the figure indicate the nodal numbers of this structural model. The properties of the 
masses are: 0.14321 ==== mmmm ton, where im is defined as the mass at the i-th 
node. The spring constants are =12k 38.0 10×  kN/m, === 453423 kkk 3100.4 ×  kN/m, 

=24k 3100.3 ×  kN/m, =14k 3100.2 ×  kN/m, and =15k 3100.1 ×  kN/m. The damping 
coefficients of the dashpots are ===== 1424342312 ccccc 0.2  kN-sec/m and 

== 1545 cc 0.4  kN-sec/m. Here, ijk  and ijc  are the constants of a spring and a dashpot, 
respectively, placed between the i-th and j-th nodes. The fifth node is fixed in the 
horizontal direction. The equations of motion for the mass-spring-dashpot system (Eq. 1) 
can be constructed using conventional techniques (c.f. Weaver, Timoshenko, and Young 
(1990)). 
Table 1 shows the properties of the elements in the 1DSDs obtained by the procedure 
described above. This example investigates the impedance functions associated with the 
displacement response at nodes 1, 2, 3, and 4 when node 1 is excited. The results of 
modal analysis indicate that no over-damped mode exists in the system. Thus, four units 
comprise the 1DSDs, as shown in Table 1 for this case.  
Fig. 3 shows the impedance functions of the 1DSDs and the impedance functions 
evaluated directly from Eq. 1 of the original four-DOF mass-spring-dashpot system. Fig. 
3 indicates that the impedance functions of the 1DSDs are identical to those evaluated 
from the original mass-spring-dashpot system. 
Consider a mass-spring-dashpot system showing over-damped modes as a possible case 
in practical applications. The same system is used here except that the damping  
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Figure 2: (a) One-dimensional mass-spring-dashpot system with four DOFs. (b) One-
dimensional lumped parameter model with spring and dashpot elements (1DSD) for 
simulating the impedance function ( ) II upS 11 =ω . (c) 1DSD containing over-damped 
modes. 
 

Table 1: Properties of mechanical elements in 1DSDs for Example 1 
Mode Natural 1,1 == JI  1,2 == JI  

n Freq.(Hz) nk  nc  Tnk  Tnc  nk  nc  Tnk  Tnc  

1 5.194 -1.620×107 7.873×103 4.071×103 -7.864×103 -6.944×107 1.593×104 3.892×103 -1.593×104 

2 14.58 -3.004×108 -2.745×104 2.107×104 2.746×104 -5.607×107 -1.880×104 5.298×104 1.882×104 

3 19.85 -2.214×107 -3.678×104 9.275×105 3.590×104 -2.559×107 -3.648×104 7.957×105 3.591×104 

4 23.60 -8.187×107 -1.589×104 6.784×104 1.590×104 1.363×109 5.494×104 -4.873×104 -5.496×104 

Mode Natural 1,3 == JI  1,4 == JI  

n Freq.(Hz) nk  nc  Tnk  Tnc  nk  nc  Tnk  Tnc  

1 5.194 -1.637×109 7.700×104 3.856×103 -7.700×104 -9.447×107 2.146×104 5.190×103 -2.145×104 

2 14.58 4.543×108 3.178×104 -1.867×104 -3.179×104 4.225×106 -6.189×103 -7.411×104 6.027×103 

3 19.85 -1.640×108 -5.638×104 3.020×105 5.649×104 1.096×107 9.698×103 -1.331×105 -9.674×103 

4 23.60 -1.707×108 -3.737×104 1.800×105 3.740×104 -9.790×107 6.365×104 8.962×105 -6.270×104  
                                                                                                            *Units: springs nk   and Tnk  (kN/m); dashpots nc  and Tnc  (kNsec/m) 
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coefficient in the dashpot, =34c 0.2  kN-sec/m, is changed to 2100.2 ×  kN-sec/m. The 
results of modal analysis indicate that the third and eighth modes in 2N ( 8= ) vibrating 
modes become over-damped modes where the eigenvalues are real and negative, whereas 
the eigenvalues of the other six modes become three sets of complex conjugates. Hence, a 
total of five units comprise the 1DSDs representing the impedance functions in the mass-
spring-dashpot system, as shown in Fig. 2c. Table 2 shows the properties of the elements 
in the 1DSDs. 
Fig. 4 shows the impedance functions of the 1DSDs with over-damped modes and the 
impedance functions evaluated directly from Eq. 1 of the original system. The impedance 
functions of the 1DSDs are compatible with those evaluated from the original system. 
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Figure 3: Impedance functions of a one-dimensional mass-spring-dashpot system using 
1DSDs [(a) real part and (b) imaginary part]. Results obtained from the original mass-
spring-dashpot system are shown for comparison. 
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Figure 4: Impedance functions of a one-dimensional mass-spring-dashpot system using 
1DSDs with over-damped modes [(a) real part and (b) imaginary part]. Results obtained 
from the original mass-spring-dashpot system are shown for comparison. 
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Table 2: Properties of mechanical elements in 1DSDs for Example 1 with over-damped 
modes 

 

Mode Natural 1,1 == JI  1,2 == JI  

n Freq.(Hz) nk  nc  Tnk  Tnc  nk  nc  Tnk  Tnc  

1 5.347 -5.635×108 -4.461×104 3.987×103 4.462×104 -9.938×107 1.849×104 3.879×103 -1.847×104 

2 5.743 - - 1.156×106 3.203×104 - - 4.775×105 1.323×104 

3 15.42 -3.479×107 9.324×103 2.337×104 -9.293×103 -7.872×109 2.207×105 5.806×104 -2.207×105 

4 23.55 -1.079×108 -1.847×104 6.927×104 1.849×104 1.561×109 5.886×104 -4.860×104 -5.888×104 

5 58.15 - - -3.278×109 -8.973×106 - - 4.110×109 1.125×107 

Mode Natural 1,3 == JI  1,4 == JI  

n Freq.(Hz) nk  nc  Tnk  Tnc  nk  nc  Tnk  Tnc  

1 5.347 -4.687×105 1.337×103 4.219×103 -1.310×103 -1.491×106 -2.522×103 4.832×103 2.530×103 

2 5.743 - - 1.083×105 3.002×103 - - -3.105×105 -8.605×103 

3 15.42 2.503×106 -2.774×103 -2.822×104 2.714×103 5.704×106 4.186×103 -2.889×104 -4.195×103 

4 23.55 -3.538×107 -2.069×104 2.643×105 2.065×104 -1.067×108 3.634×104 2.694×105 -3.614×104 

5 58.15 - - 2.766×107 7.570×104 - - -2.823×107 -7.727×104 

 
                                                                                                            *Units: springs nk   and Tnk  (kN/m); dashpots nc  and Tnc  (kNsec/m) 

3.2  Example 2: Two-dimensional truss frame system with damping 

Fig. 5 shows a two-dimensional truss frame system with six DOFs with damping. The 
fourth and fifth nodes are fixed in the vertical and horizontal directions. The structural 
model comprises seven rod elements. Each rod has a cross-sectional area 01.0=tA m2 
and elastic modulus 61000.1 ×=tE  kN/m2; the mass density of rods 3 and 4 is 

00.4=tρ  ton/m3, and that of the other five rods is 00.2=tρ  ton/m3. In the system, a 
conventional rod element is used with a consistent mass that can carry only axial loads 
(c.f. Weaver, Timoshenko, and Young (1990)). In this example, the damping matrix for 
each rod element is constructed on the basis of 

[ ] [ ]kkk KC β= ,                                                                                                              (49) 

where 

1

2
ω
ζ

β k
k = ,                                                                                                                      (50) 

where [ ]kC  and [ ]kK  are the damping matrix and stiffness matrix, respectively, of the k-
th rod element; the parameter kζ  is the damping ratio of the k-th rod at the fundamental 
natural frequency of the structural system, and 1ω  is the fundamental natural circular 
frequency of the undamped system. In this example, the damping ratio of rods 1, 6, and 7 
is 0.02, whereas that of rods 2, 3, 4, and 5 is 0.01. 1ω  ( 1.212=  rad/sec) is estimated 
using conventional modal analysis without damping. 
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Figure 5: (a) Truss frame system with six DOFs with damping. (b) One-dimensional 
lumped parameter model with spring and dashpot elements (1DSD) for simulating the 
impedance function ( ) II upS 11 =ω . 

Table 3: Properties of mechanical elements in 1DSDs for Example 2 

 

Mode Natural 1,1 == JI  1,2 == JI  

n Freq.(Hz) nk  nc  Tnk  Tnc  nk  nc  Tnk  Tnc  

1 33.75 -9.523×107 9.047×103 3.862×104 -9.038×103 9.523×107 -9.047×103 -3.862×104 9.038×103 

2 45.43 -7.340×107 -3.622×103 1.457×104 3.623×103 -7.340×107 -3.622×103 1.457×104 3.623×103 

3 96.34 -1.178×108 3.456×103 3.710×104 -3.451×103 -1.178×108 3.456×103 3.710×104 -3.451×103 

4 148.5 -5.153×108 -7.281×104 8.919×106 7.252×104 -5.153×108 -7.281×104 8.919×106 7.252×104 

5 153.3 -1.341×107 9.411×102 6.056×104 -9.292×102 1.341×107 -9.411×102 -6.056×104 9.292×102 

6 194.9 -8.074×106 -8.420×102 1.317×105 8.426×102 8.074×106 8.420×102 -1.317×105 -8.426×102 

Mode Natural 1,3 == JI   

n Freq.(Hz) nk  nc  Tnk  Tnc      

1 33.75 6.478×1020 3.957×1018 -4.120×1020 -1.500×1018     

2 45.43 -3.438×109 2.453×104 1.427×104 -2.453×104     

3 96.34 3.537×108 -7.171×103 -5.322×104 7.164×103     

4 148.5 1.168×108 1.010×104 -7.618×105 -1.012×104     

5 153.3 2.892×1019 1.462×1017 -2.843×1019 -6.055×1015     

6 194.9 -4.882×1020 1.180×1019 4.855×1020 -1.341×1016     

 
                                                                                                            *Units: springs nk   and Tnk  (kN/m); dashpots nc  and Tnc  (kNsec/m) 

Table 3 shows the properties of the elements in the 1DSDs obtained by the proposed 
procedure. In this example, the impedance functions associated with the displacement 
response at nodes 1, 2, and 3 in the horizontal direction when node 1 is excited in the 
same direction are discussed. No over-damped modes exist in this system. Table 3 shows 
that extremely large coefficients for certain elements exist in the 1DSDs, which is caused 
by the markedly small nJnIφφ  and nJnIφφ  components of the eigenvectors. In this case, 
the displacements of these units are considered to be negligibly small in the 1DSDs. 
Therefore, reduced 1DSDs consisting of units excluding the shaded units are used to 
approximately express the impedance functions. In this example, the above reduction of 
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units is attributed mainly to the symmetry in the shape and material properties of the 
structural system. In particular, nodes located on the line of symmetry of the system tend 
to show extremely small components of the eigenvectors for particular modes. Therefore, 
it is conceivable that the above reduction may not be generally expected in realistic 
structural systems having asymmetric shapes and properties. 
Fig. 6 compares the impedance functions from the 1DSDs and those evaluated directly 
from Eq. 1 for the truss frame system. It is clear that they are in close agreement. 
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Figure 6: Impedance functions of a two-dimensional truss frame system using 1DSDs 
[(a) real part and (b) imaginary part]. Results obtained from the original truss frame 
system are shown for comparison. 

3.3  Example 3: Two-dimensional cantilever plate system with damping 

Fig. 7 shows a two-dimensional plate system with eight DOFs with damping. Nodes 5, 6, 
7, and 8 are fixed in the vertical and horizontal directions. The structural system 
comprises three conventional rectangular isoparametric elements (c.f. Weaver, 
Timoshenko, and Young (1990)), where each element is 0.1  m ×  0.1  m and has a 
Poisson’s ratio of 20.0=pν  and mass density 00.7=pρ  ton/m3. The elastic modulus 
of elements 1 and 2 is 71000.1 ×=pE  kN/m2; that of element 3 is 71050.0 ×=pE  
kN/m2. The damping ratios are 008.031 == ζζ  and 004.02 =ζ . In this example, Eqs. 
49 and 50, which were used in the previous example, are applied to construct the 
system’s damping matrix. 
Here, the impedance functions associated with the displacement response at nodes 1, 2, 
and 3 in the horizontal direction when node 1 is excited in the same direction are 
discussed. Table 4 shows the properties of the elements in the 1DSDs transformed by the 
proposed procedure. Table 4 indicates that no unit is removable in the 1DSDs because the 
material properties of the system are asymmetric, so nJnIφφ  and nJnIφφ  in the 
eigenvectors are not extremely small. 
Fig. 8 compares the impedance functions for the 1DSDs and the impedance functions 
evaluated directly from Eq. 1 for the original plate system, which are in agreement. 
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Figure 7: Two-dimensional plate system with 8 DOFs. (b) One-dimensional lumped 
parameter model with spring and dashpot elements (1DSD) for simulating the impedance 
function ( ) II upS 11 =ω . 

 
Table 4: Properties of mechanical elements in 1DSDs for Example 3 

 

Mode Natural 1,1 == JI  1,2 == JI  

n Freq.(Hz) nk  nc  Tnk  Tnc  nk  nc  Tnk  Tnc  

1 101.4 -6.731×1016 2.070×109 2.582×107 -2.070×109 -6.731×1016 2.070×109 2.582×107 -2.070×109 

2 184.3 -4.280×1013 -3.927×108 4.834×109 3.928×108 4.280×1013 3.927×108 -4.834×109 -3.928×108 

3 249.8 -6.853×1012 -1.378×107 6.823×107 1.378×107 -6.853×1012 -1.378×107 6.823×107 1.378×107 

4 460.2 -8.536×1011 1.295×107 1.636×109 -1.290×107 -8.536×1011 1.295×107 1.636×109 -1.290×107 

5 464.8 -1.718×1012 8.561×107 3.539×1010 -8.326×107 1.718×1012 -8.561×107 -3.539×1010 8.326×107 

6 618.8 -6.832×1012 -1.853×108 7.572×1010 1.846×108 -6.832×1012 -1.853×108 7.572×1010 1.846×108 

7 633.9 1.138×1012 2.384×108 -4.828×1011 -1.452×108 -1.138×1012 -2.384×108 4.828×1011 1.452×108 

8 733.7 -6.394×1014 -6.116×107 1.243×108 6.116×107 6.394×1014 6.116×107 -1.243×108 -6.116×107 

Mode Natural 1,3 == JI   

n Freq.(Hz) nk  nc  Tnk  Tnc      

1 101.4 -1.864×1016 9.505×108 1.967×107 -9.505×108     

2 184.3 4.105×1013 4.894×108 -7.831×109 -4.895×108     

3 249.8 4.657×1012 1.245×107 -8.201×107 -1.245×107     

4 460.2 7.991×1011 -1.264×107 -1.665×109 1.259×107     

5 464.8 -9.977×1011 3.102×107 8.126×109 -3.064×107     

6 618.8 -4.078×1013 -5.195×108 1.001×1011 5.200×108     

7 633.9 2.237×1010 -1.683×107 -1.974×1010 1.654×106     

8 733.7 1.322×1011 1.752×106 -4.940×108 -1.755×106     

 
                                                                                                            *Units: springs nk   and Tnk  (kN/m); dashpots nc  and Tnc  (kNsec/m) 
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Figure 8: Impedance functions of a two-dimensional plate system using 1DSDs [(a) real 
part and (b) imaginary part]. Results obtained from the original plate system are shown 
for comparison. 

4 Advantages of Proposed Transformation into One-Dimensional Spring-Dashpot 
Systems 

Modal analysis has frequently been applied to solving various dynamic problems because 
a small set of modes from the lowest order can appropriately express the dynamic 
characteristics of structural systems without using all the modes. This advantage may also 
be an advantage of the proposed 1DSDs. It is apparent that the number of DOFs in the 
1DSDs after the transformation is twice that of the original structural systems except for 
the specific reduction owing to the system’s symmetry, as shown in the examples. In fact, 
the specific reduction is rarely expected to exist in real structural systems because of the 
asymmetry in general structural systems and the arbitrariness of the nodes selected. This 
implies that, in general, the computational domain size and time of 1DSDs are larger than 
those of the original structural systems. In actuality, a great advantage of the 1DSDs is 
that the units comprising the 1DSDs are associated with the vibration modes of the 
original structural system. Therefore, because of the advantage of conventional modal 
analysis, a small set of units associated with modes from the lowest order can 
appropriately express the dynamic characteristics of structural systems without using all 
the units. In the following discussion, we attempt to reconstruct 1DSDs where units 
associated with high-order modes in the high-frequency region are removed. 
Fig. 9 shows a two-dimensional cantilever plate system of 126 nodes and 100 elements 
with damping. The structural system comprises eight rectangular isoparametric elements; 
each element is 0.1  m ×  0.1  m in size and has an elastic modulus 71000.1 ×=pE  
kN/m2, Poisson’s ratio 30.0=pν , and mass density 00.1=pρ  ton/m3. A damping ratio 
of 002.0=kζ  is assumed for shaded elements, whereas a damping ratio of 001.0=kζ  
is assumed for the others. In this system, six nodes on the left side of the system are fixed 
in the horizontal and vertical directions. Accordingly, this structural system has 240 
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Figure 9: Two-dimensional cantilever plate system with 100 elements. 

DOFs; 240 units with 480 DOFs comprise the corresponding 1DSD. In this example, the 
impedance functions associated with the displacement response at node B in the 
horizontal direction when node A is excited in the horizontal direction are discussed. 
Modal analysis shows that the fundamental natural frequency and the highest natural 
frequency of the original cantilever system with damping are 6.498 Hz and 2309 Hz, 
respectively. In addition, no units associated with over-damped modes and no removable 
units having extremely large properties appear in the system. 
Fig. 10 compares the impedance functions evaluated using the original cantilever plate 
system and a 1DSD consisting of only 13 units associated with 26 modes from the lowest 
order ranging from 0 Hz to 300 Hz. Fig. 10 indicates that the impedance functions of the 
1DSD show relatively close agreement with those of the original system below 250 Hz, 
whereas the local minima and maxima in the impedance functions around 65 Hz and 150 
Hz show discrepancies in their amplitudes. The approximate representation of the 
impedance functions by the 1DSD without higher modes above 300 Hz is attributable to 
these discrepancies. 
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Figure 10: Impedance functions of a two-dimensional cantilever plate system (100 
elements) with damping using a 1DSD with 13 units and a 1DSD with the residual 
stiffness (RS) for a target frequency range from 0 Hz to 300 Hz [(a) real part and (b) 
imaginary part]. Results obtained from the original cantilever plate system are shown for 
comparison. 
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To improve the accuracy of the 1DSD, a mechanical element associated with a so-called 
residual stiffness is incorporated. The residual stiffness has often been applied to 
approximate expressions of structural systems in conventional modal analysis. It can be 
defined as the remaining stiffness after removing terms associated with ω  from Eqs. 25 
and 26, as the effect of target frequency ω  could be neglected at high frequencies. Thus, 
the residual stiffness representing the stiffness of high-frequency modes is expressed as  
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11111
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where l  is the maximum mode number considered in the 1DSDs without residual 
stiffness.  
The residual stiffness IJR  is incorporated into an approximate expression of the 
impedance functions ( )ωIJS  as follows: 
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Therefore, the residual stiffness IJR  can be incorporated into the 1DSDs as a mechanical 
element arranged in series with the 1DSDs, as shown in Fig. 11. 
Fig. 10 also shows the impedance functions evaluated using the 1DSDs with the residual 
stiffness IJR . An appreciable improvement in the match between the amplitudes at the 
local minima and maxima in the impedance functions is achieved using this technique, as 
shown in the figure. 
To verify the accuracy of the transient response of the 1DSDs, a unit impulse force is 
applied at the end of the 1DSDs. The duration of the excitation is assumed to be 0.002 s, 
as shown in Fig. 12. The excitation begins at 5.000 s. Fig. 12 shows the time histories of 
the displacement evaluated using the 1DSDs and the original structural system where the 
displacement response at node B is directly computed by exciting node A with the 
impulse force. In this example, Newmark’s average acceleration method (Newmark 
(1959)) is used in the numerical computations. Fig. 12 shows that the time histories of the 
1DSDs are in close agreement with that of the original structural system. 
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Figure 11: 1DSDs with residual stiffness for approximating impedance functions in 
general structural systems with damping. 
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Figure 12: Comparison of the displacement response of a two-dimensional cantilever 
plate system (of 100 elements) with damping using a 1DSD with 13 units and a 1DSD 
with residual stiffness (RS) when subjected to an impulse force. Results obtained from 
the original cantilever plate system are shown for comparison. 

 

5 Conclusions 

This paper presents a one-dimensional LPM that represents the impedance function 
between two nodes arbitrarily selected in general structural systems with non-classical 
damping. The impedance function was transformed into an equivalent LPM consisting of 
units arranged in series. Each unit is a parallel system composed of a spring, a dashpot, 
and a unit having a spring and a dashpot arranged in series. The properties of the 
elements comprising the 1DSDs were derived from a proposed procedure based on 
complex modal analysis. 
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The applicability of the proposed transformation procedure and the accuracy of the 
impedance functions of the proposed 1DSDs were verified with three examples of 
structural systems. The results of the proposed transformation were compared with those 
evaluated directly from the original structural systems. In the transformation procedure, 
the number of elements and DOFs in 1DSDs could be reduced because of the symmetry 
in the shape and material properties of the structural systems. The results show that the 
impedance functions using the 1DSDs are in agreement with those evaluated from the 
original structural systems. 
A large number of units associated with high-order modes in the high-frequency region 
can be removed from the proposed 1DSDs as an approximate expression of impedance 
functions in a target frequency region. The accuracy of the approximated 1DSDs is 
improved by incorporating an additional unit associated with residual stiffness. This 
approximation can significantly reduce the DOFs of the 1DSDs, so a marked decrease in 
the computational domain size and time can be expected when solving dynamic problems. 
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Errata in the published article in CMES as follows: 
 
<Correct> 
 

dnnn iωσλ +−= ,                                                                                                          (12) 

dnnn iωσλ −−= ,                                                                                                           (13) 

 

{ } [ ][ ][ ] [ ][ ][ ]( ){ }PU TT φγφφγφ += .                                                                            (20) 

 





ERRATA 
 
Masato Saitoh：Equivalent One-Dimensional Spring-Dashpot System Representing 
Impedance Functions of Structural Systems with Non-Classical Damping，CMES: 
Computer Modeling in Engineering & Sciences, Vol.67, No.3, pp.211-238, 2010. 11. 
 
Typographical errorta were discovered in Equation (12), (13) and (20). The corrected 
equations are as follows: 
 


(Eq.12)    dnnn iωσλ +=   --->     dnnn iωσλ +−=                                


(Eq.13)    dnnn iωσλ −=   --->     dnnn iωσλ −−=                                


(Eq.20)     { } [ ][ ][ ] [ ][ ][ ]( ){ }PU TT φγφφγφ +=  --->  { } [ ][ ][ ] [ ][ ][ ]( ){ }PU TT φγφφγφ +=


.                                      


 





