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Abstract 
 This study presents the effects of a local nonlinearity in cohesionless soil upon the optimal radius 
minimizing the bending strains of a vertical, cylindrical fixed-head pile embedded in a layered 
soil stratum in a soil-pile-structure system where the kinematic interaction dominates. The 
Seismic Deformation Method (SDM) with discretized numerical models is applied since the 
SDM is a static numerical method that can easily consider realistic conditions of layered soil 
strata and the nonlinearity of the soil. In the numerical models, the local nonlinearity of the soil in 
the vicinity of the pile is represented by subgrade springs having bi-linear skeleton curves with a 
simple hysteretic loop. Various amplitudes of the lateral displacements of the soil and the lateral 
forces at the head of the pile are considered as numerical parameters. The results of parametric 
analyses reveal the presence of an optimal pile radius that locally minimizes the bending strains 
of the piles under strong nonlinearity of the soil, and the optimal pile radius tends to increase as 
the degree of nonlinearity increases. Criteria are presented for predicting the increment of the 
optimal radius of soil-pile-structure systems under strong nonlinearity in the soil. 
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INTRODUCTION 

This study focuses on the effects of a local nonlinearity in cohesionless soil upon the optimal 
radius minimizing the bending strain of a vertical, cylindrical fixed-head pile embedded in a 
layered soil stratum in a soil-pile-structure system where the kinematic interaction dominates. In 
Saitoh [1], the author described the fundamental relation between the radius and the bending 
strain at the head of a pile using three-dimensional wave propagation theory, showing the 
presence of an optimal pile radius that minimizes the bending strain at the head of the pile. 
Moreover, the author derived criteria by which the optimal radius can be determined for soil-pile-
structure systems. Saitoh [1] gave a general expression for the closed-form formulae by 
normalizing the bending strain with respect to a mean shear strain of a soil stratum sγ . The mean 
shear strain  sγ  is defined as the absolute value of the maximum response displacement of the 
ground surface with respect to the base divided by the height of the soil stratum. Consequently, it 
was found that the normalized bending strains can be expressed by normalized parameters, such 

as the slenderness ratio Ha , the ratio of soil and pile stiffness pg EE , and a factor rF  and a 

phase lag rφ  which represent dynamic characteristics of loading at the head of the pile and 
deformation of the soil.   

From a practical point of view, a pile may be influenced by local nonlinearities in the soil, 
such as failure of the soil surrounding the pile, and slippage, gapping, and separation may occur 
at the interface between the pile and the soil during earthquakes. Many studies have proposed 
numerical models for expressing the force-displacement relation under the conditions of such 
local nonlinearities in the soil in the vicinity of a pile based on experimentally measured 
responses.  For example, Gerolymos and Gazetas [2] proposed a sophisticated mathematical 
model that can fit many types of force-displacement relations obtained from experimental data. 
This model is based on an extension and modification of the Bouc-Wen model, which is a well-
known model based on nonlinear springs distributed along the pile for representing the lateral soil 
reaction (Trochanis et al. [3], and Badoni and Makris [4]).  

Therefore, it is tempting to speculate as to how the optimal pile radius is influenced by such 
inelastic conditions from a practical point of view. However, expanding the closed-form formulae 
based on the wave propagation theory to account for such practical conditions is extremely 
difficult. In recent years, a static numerical method called the Seismic Deformation Method 
(SDM) has been used in practical applications as a useful method to evaluate the response of a 
pile kinematically affected by the deformation of the soil stratum. SDM can easily consider 
realistic conditions of layered soil strata and the nonlinearity of the soil in the vicinity of piles. 
Luo et al. [5] verified the validity of the SDM in a simulative analysis of pile foundations 
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embedded in soft soil that experienced the Hyogoken-Nanbu earthquake. Therefore, SDM is 
applicable to the above estimation whenever a local nonlinearity occurs in the soil in the vicinity 
of a pile. Until now, there has been little consideration of the optimal pile radius associated with 
the local nonlinearity in the soil, even for the case of a simple nonlinear soil reaction such as a 
model based on an elastic / perfectly plastic constitutive law. In this study, therefore, a simply 
approximate model, represented by a bilinear skeleton curve with a simple hysteretic loop, is 
used for understanding the fundamentals of the optimal pile radius influenced by the local 
nonlinearity in the soil. For the sake of simplicity, it is assumed that no strength deterioration and 
no stiffness degradation occur with cyclic loading in this model.  It is presumed, therefore, that 
the nonlinearity of soil reaction could be underestimated when compared with that of the actual 
soil reaction showing significant deterioration of the strength or degradation of the stiffness. 
Another assumption is that the stiffness of the soil is uniform over the entire height of the soil 
layers, whereas various types of stiffness distributions can be expected in practice. The reason for 
this assumption is that, in this study, I concentrate on the effect of local nonlinearities in the soil 
upon the pile by removing the effect of inhomogeneous soil layers, such as the transmissibility of 
bending strains appearing at discontinuities in the soil stiffness (e.g., Mylonakis [6]). 

Accordingly, the objectives of the present study are: (1) To obtain numerical solutions of the 
normalized bending strains at the head of a pile in the presence of a local nonlinearity in the soil 
by using SDM; and (2) to show the effects of the nonlinearity upon the normalized bending strain 
and the optimal pile radius with different amplitudes of the lateral displacements of soil and the 
lateral forces at the top of the pile; (3) to compare the optimal pile radius under linearly elastic 
conditions with that under the nonlinear conditions; and (4) to present criteria for evaluating the 
amount of change in the optimal radius of soil-pile-structure systems under strong nonlinearity in 
the soil.  
 

 

NUMERICAL MODELS STUDIED 

The soil-pile-structure system used is shown in Fig. 1. A vertical, cylindrical pile of radius a  
(diameter d ) is embedded in a layered soil of thickness H . The pile is discretized by elastic 

beam elements of length L  and flexural rigidity IE p  ( 7105.2 ×=pE  kN/m2). In this study, the 

length of the pile, which is identical to the thickness H , is assumed to be 20 m, and that of the 
beam element L  is assumed to be 0.5 m. A soil spring representing the horizontal subgrade 
reaction of the soil is concentrated at each node of the beam elements. The soil spring has a 
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bilinear skeleton curve where the ratio of the second stiffness (after yielding) to the initial 
stiffness is assumed to be zero (in this study, a slight tangential is given to the second stiffness for 
stability of the numerical calculations); this is identical to the subgrade reaction that follows the 
elastic / perfectly plastic constitutive law.  

The initial stiffness of the horizontal subgrade spring of the soil e
iK  at the i-th node of the 

pile is determined from the following formulae: 
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where ik  is the product of the diameter of the pile d  and the horizontal deformation of the 
subgrade of the i-th layer iK ; and ih  is the thickness of the i-th layer. According to Gazetas and 
Dobry [7], the product ik  ( dKi= ) in Eq. 1 can be approximated by  

 

gii Ek 2.1= ,                                 (2) 

 

where giE  is the Young's modulus of the soil in the i-th layer. 

It is apparent that Eq. 1 is derived based on the equivalency of the integrated stiffness of the 
rectangular area of the product ik   distributed along two adjoining beam elements (only one 
beam element at the 1st node) between which the target node is placed. 

The ultimate strength of the horizontal subgrade spring of the soil, e
iP , at the i-th node is 

given by the following formulae: 
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where ( )BMUIp I
i ,,=  is the ultimate soil reaction of the i-th layer. In general, the ultimate soil 

reaction depends on the type of soil supporting the pile (Broms [8,9], Matlock [10], Reese [11]). 
In this study, it is assumed that the pile is embedded in a cohesionless soil stratum. Broms [8] 
proposed the following expression for the ultimate soil reaction per unit length of a pile 
embedded in sand: 
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Here, iγ ′  and iφ  are the effective unit weight and the angle of shearing resistance of the i-th soil 
layer, respectively.  

It is apparent that Eq. 3 is derived based on the equivalency of the integrated strength of the 
trapezoid (triangle at the 1st node) area of the ultimate soil reaction distributed along two 
adjoining beam elements (only one beam element at the 1st node) between which the target node 

is placed. In this study, the Young's modulus of the soil giE  is assumed to be uniform over the 

entire height of the soil strata, and the effective unit weight iγ ′  and the angle of shearing 

resistance of the soil iφ  are assumed to be 18 kN/m3 and o30 , respectively, as shown in Fig. 2. In 

addition, the toe of the pile is supported by compliant bedrock. The toe of the pile is presumed to 
be restrained elastically against rotational movements by a spring of static stiffness rK  at the 
base. In this study, the stiffness rK  is described by the following formula [Borowicka [12]]: 
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where bρ , sbV , and bν  are the density, the shear velocity, and the Poisson’s ratio of the compliant 
bedrock, respectively. 

 

 

NUMERICAL PROCEDURE 

The basic equation describing the pile is 
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where pu  and su  are the horizontal displacements of the pile and the soil, respectively; and sP  is 

the horizontal spring reaction on the pile. The total equilibrium equation of the discretized pile 
and the horizontal soil springs is numerically solved. As the boundary conditions, a lateral load 
V  generated by the inertial response of the superstructure and footing is given to the head of the 
pile, and a lateral displacement su  ( siu ) due to the deformation of the soil strata is given to each 
node of the soil spring. The distribution of the lateral displacement of the soil along the pile is 
assumed to be the mode shape at the fundamental frequency of the soil strata calculated by a 
modal analysis without material damping of the soil. In this study, therefore, a sinusoidal shape of 
1/4 wavelength is the resulting distribution of the lateral displacement because the stiffness of the 

soil stratum giE  is assumed to be uniform in this analysis.  

Recall that a specific factor rf  expresses the effect of the lateral load V  relative to the 
deformation of the soil medium [1]. This factor rf  is treated as a complex value since a phase lag 
generally appears between the lateral load V  and the mean shear strain of the soil medium sγ . 
Therefore, this factor is given by the following formula: 
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Here, the factor rF  is the ratio of the maximum values of the lateral load V  and the mean shear 
strain sγ , and the factor rφ  is the phase lag of the lateral load V  with respect to the mean shear 
strain sγ . 

Although the factor rF  takes the same value, a different amplitude of the lateral load V  (also 
a different amplitude of the mean shear strain sγ ) may cause different behavior of the bending 
strains because of the nonlinearity of the soil. This is fundamentally different from the bending 
strains under linearly elastic conditions. Therefore, numerical results for various amplitudes of 
the lateral load V  and the mean shear strain sγ  are presented in this study. 

The phase lag rφ  cannot be directly incorporated into the numerical analysis in the SDM as a 
complex value since the numerical solution in the SDM is evaluated by using an incremental 
static analysis. Therefore, the effect of the phase lag rφ  should be considered using an 
appropriate technique. In this study, it is assumed that the lateral load V  and the displacements of 
the soil medium siu  associated with the mean shear strain sγ  have a sinusoidal waveform. The 
phase lag rφ  is given to the lateral load V  with respect to the displacements of the soil medium 

siu . According to a well-known step-by-step procedure, the wave-formed lateral load V  with the 
phase lag rφ  is given to the pile head, and the wave-formed displacements of the soil medium siu  
are simultaneously given to the nodes of the soil springs, which are at the opposite side of the 
nodes of the pile elements, as shown in Fig. 1. 

 

 

NORMALIZED BENDING STRAIN UNDER LOCAL NONLINEARITY OF SOIL 

Figs. 3 and 4 show the variations in normalized bending strains as functions of the slenderness 
ratio Ha  with different values of the factor rF  for the phase lag 0=rφ . The absolute values of 
the normalized bending strains due to the inertial bending (only the lateral load V  is considered 
in the analysis), the kinematic bending (only the displacements of the soil medium siu  are 
considered), and the total bending are shown in the cases of =V 10 kN and =V 1000 kN, 

respectively. It is assumed that the stiffness ratio 001.0=pg EE ; the stiffness ratio 

05.0=bg EE ; the mass density ratio 25.1=gp ρρ ; and the Poisson’s ratios 45.0== bνν . 
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Figs. 3(a) and 4 (a) indicate that the normalized bending strain due to the inertial bending tends to 
increase for small Ha  (≤0.1) as the nonlinearity of the soil increases according to the increase 
in the amplitude of the lateral load V . Exertion of the majority of the lateral load on the pile 
accompanied by the yielding of the subgrade soil spring may be attributable to the increase in the 
normalized bending strains due to the inertial bending. 

On the other hand, Fig. 3(b) and 4(b) show that the local maximum area of the bending strain 
due to the kinematic bending gradually decreases as the factor rF  becomes small ( 5100.1 −×≤ ): 
the corresponding slenderness ratio that maximizes the kinematic bending strain shifts toward 
smaller values due to the nonlinearity of the soil. It is conceivable that the yielding of the 
subgrade soil spring may reduce the external force, which is associated with the deformation of 
the soil, acting along the pile, so that the bending strains due to the kinematic bending tend to 
decrease.  

It is noted, therefore, that an opposite change in the bending strains with Ha , due to the 
inertial bending and the kinematic bending, occurs due to the nonlinearity of the soil.  

Figs. 3(c) and 4(c) indicate the presence of a local minimum area where the normalized 
bending strains due to both the inertial bending and the kinematic bending are minimized. In the 
case of =V 1000 kN, the distance between the slenderness ratios at the local minimum and the 
local maximum tends to decrease when compared with that in the case of =V 10 kN due to the 
nonlinearity of the soil. In addition, the amplitudes of the normalized bending strains at the local 
minimum and the local maximum tend to be close because of the opposite change in the bending 
strains due to the inertial bending and the kinematic bending. The opposite change also induces a 
slight change in the slenderness ratio associated with the local minimum area: in fact, the local 
minimum area tends to shift toward larger slenderness ratios. The above behavior may more 
clearly be seen from the contours of the total bending strains in the cases of =V 10 kN and 
=V 1000 kN, as shown in Fig. 5. Details of the changes in the optimal pile radius that minimize 

the normalized bending strain are discussed later. 

Figs. 3(d) and 4(d) also show the maximum length from the head of the pile to the soil spring 
that exceeds the ultimate strength of the soil, when the pile is influenced by both the inertial 
bending and the kinematic bending. It is found that the maximum length exceeds one half of the 
length of the pile for small rF  ( 5100.1 −×≤ ) in the case of =V 1000 kN, which can be considered 
as an extreme nonlinearity of the soil. In this case, the mean shear strain sγ  associated with the 

factor 5100.1 −×=rF  is equal to 01.0=sγ , which would almost be the maximum value in 

practice. Therefore, the nonlinearity of the soil could be overestimated at this small value of the 
factor Fr  ( 5100.1 −×=rF ). Accordingly, it is conceivable that the above results for the small rF  
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( 5100.1 −×≤ ) would be comparable to those in cases when an extreme decrease in the ultimate 
strength of the soil occurs due to changes in the effective unit weight iγ ′  (e.g., a change in water 
level) and the angle of shear resistance iφ  in Eq. 4(a), as well as when the strength deterioration 
and stiffness degradation of the soil springs are taken into consideration in practice. 

Fig. 6 shows the variations in normalized bending strains as functions of the slenderness ratio 
Ha  with different values of the factor rF  for the phase lag 0=rφ  in the case of =sγ 0.01 (i.e., 

changes in the lateral load V  are accompanied by changes in the factor rF ). For large rF  
( 5100.1 −×≥ ), the maximum length exceeds one half of the length of the pile when the 
slenderness ratio Ha  is small ( 1.0≤ ), as shown in Fig. 6 (d). Herein, the lateral load V  
associated with the factor 5100.1 −×=rF  is equal to =V  1000 kN in this case. It is considered, 
therefore, that an extremely large lateral load is given to the head of the pile for large rF  
( 5100.1 −×≥ ). Thus, the nonlinearity of the soil dominates for large rF ; this is opposite to the 
change shown in Fig. 4 where the nonlinearity of the soil dominates for small rF . Fig. 6 (b) 
indicates that the normalized bending strains due to the kinematic bending uniformly decrease 
with the factor rF  due to the nonlinearity of the soil, whereas the normalized bending strains due 
to the inertial bending tend to increase as the factor rF  increases, as shown in Fig. 6 (a). 
Therefore, a significant change in the normalized bending strains due to the inertial and the 
kinematic bending may not appear for small rF , as shown in Fig. 6 (c), which is different from 
the case shown in Fig. 4.  

Fig. 7 shows the variations in normalized bending strains with different values of the phase 
lag rφ  for the factor 5100.1 −×=rF . Assumptions identical to those in Fig. 4 are made in Fig. 7 

for the non-dimensional parameters pg EE , bg EE , and gp ρρ , and the Poisson’s ratios ν  

and bν . Fig. 7 (a) shows the absolute values of the normalized bending strains due to the inertial 
bending and the kinematic bending, respectively, for various amplitudes of the lateral load V . It 
is apparent that both bending strains are independent of the phase lag rφ . Fig. 7 (a) shows that the 
normalized bending strain due to the inertial bending increases for small slenderness ratio 

Ha ( 05.0≤ ) as the lateral load increases, whereas the bending strain due to the kinematic 
bending gradually decreases for the slenderness ratio Ha ( 05.0≥ ) as the lateral load increases. 
Fig. 7 (b) shows the total bending strain due to both the inertial bending and the kinematic 
bending for the phase lag 0=rφ , 2π− , and π− . A slight increase in the slenderness ratio that 
minimizes the normalized bending strain can be seen in the figure. This is attributed to the 
increase in the inertial bending around the local minimum: the decrease in the bending strain due 
to the kinematic bending has no effect upon the increase in the slenderness ratio because of the 
negligible change in the bending strain around the local minimum. Fig. 7 (f) shows an almost 
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uniform change in the maximum length of the pile associated with the nonlinearity of the soil 
with the phase lag rφ . It is noted, therefore, that the changes in the phase lag rφ  have little effect 
upon the degree of nonlinearity of the soil, and thus have negligible effect upon the changes in 
the normalized bending strains, as shown in Figs. 7 (c) and (d). In actuality, the degree of change 
in the optimal pile radius is influenced to some extent by the change in the phase lag rφ  under the 
nonlinearity of the soil. Details are discussed later. 

 Figs. 8 and 9 show the effects of the stiffness ratio pg EE  upon the normalized bending 

strains for the factor 5100.1 −×=rF  and the phase lag 0=rφ  in the cases of =V 10 kN and 1000 
kN, respectively. The same assumptions in Fig. 4 are made for the non-dimensional parameters in 
Figs. 8 and 9. Fig. 9 (d) indicates that a significant increase in the maximum length can be seen 

for large slenderness ratio Ha  ( 1.0≥ ) as the stiffness ratio pg EE  increases. Accordingly, the 

normalized bending strain due to the kinematic bending markedly decreases in the above region 
as compared with that in Figs. 8(b) and 9(b). The reason for this is that the reaction force of the 
soil springs due to the displacement of the soil apparently increases according to the increase in 
the stiffness of the soil, as indicated by Eq. 2; therefore, the reaction force tends to exceed the 
ultimate strength of the soil for a given displacement of the soil as the stiffness of the soil (the 
stiffness ratio) increases. The bending strain due to the inertial bending gradually increases due to 
the nonlinearity of the soil for the small slenderness ratio ( 1.0≤ ) (Figs. 8 (a) and 9(a)).  Finally, 
the amplitudes of the normalized bending strains at the local minimum and the local maximum 
tend to be close, and the distance between the slenderness ratios at the local minimum and the 
local maximum tends to decrease according to the nonlinearity of the soil, as shown in Figs. 8(c) 
and 9(c). In addition, a slight change in the slenderness ratio Ha  associated with the local 
minimum can be found (actually, the local minimum shifts toward higher values of slenderness 
ratio, as shown later). More clear variations of the total bending strains with the stiffness ratio 

pg EE  can be seen from the contours shown in Fig. 10. 

 

 

OPTIMAL PILE RADIUS UNDER LOCAL NONLINEARITY OF SOIL 

Figs. 11 and 12 show the slenderness ratio that locally minimizes the normalized bending 
strains in soil-pile-structure systems where the kinematic interaction dominates. Assumptions 

identical to those in Fig. 4 are made for the non-dimensional parameters bg EE  and gp ρρ , 
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and the Poisson’s ratios ν  and bν . In Fig. 11, it is considered that an extreme nonlinearity of the 
soil occurs for small rF  ( 5100.1 −×≤ ) in the case of =V 1000 kN, as described above. Fig. 11 
indicates that the slenderness ratios Ha  at the local minima tend to increase as the amplitude of 
the lateral load V  increases. This is a common characteristic in all cases of different rφ  and 

pg EE . On the whole, it appears that the slenderness ratios Ha  at the local minima increase as 

rF  decreases and as the stiffness ratio pg EE  increases, because of the increased effect of the 

nonlinearity of the soil. Fig. 12 shows the slenderness ratio Ha  at the local minima with 
different values of the mean shear strain of the soil medium sγ . As mentioned above, the lateral 
load V  associated with the factor 5100.1 −×=rF  is equal to =V  1000 kN in this case. Therefore, 
an extreme nonlinearity of the soil occurs for large rF  ( 5100.1 −×≥ ). In general, it is found that 
the slenderness ratios Ha  at the local minima tend to increase as the amplitude of the mean 
shear strain sγ  increases. It is also found that, on the whole, the slenderness ratios Ha  increase 

as either the factor rF  or the stiffness ratio pg EE  increases. In actuality, however, the 

slenderness ratios Ha  partially decrease as the factor rF  increases. More details of this 
tendency are presented in the next section. 

 

 

CRITERIA FOR PREDICTING OPTIMAL PILE RADIUS UNDER LOCAL 
NONLINEARITY OF SOIL 

The above-mentioned characteristics can more clearly be seen in the criteria shown in Fig. 13, 
which is provided for easily estimating the increment in the slenderness ratio Ha  at the local 
minima. These figures present the ratio (expressed as a percentage) of the slenderness ratio Ha  
under the local nonlinearity in the soil to that under the linearly elastic condition in the soil. Two 
types of ratios are plotted on the graphs simultaneously for different rF : 1) a lateral load 
=V 1000 kN is assumed (plotted as “V-lines”); and  2) a mean shear strain =sγ 0.01 is assumed 

(plotted as “G-lines”). As described above, small lateral load V  and mean shear strain sγ  may 
not significantly affect the slenderness ratio at the local minima (the slenderness ratio is almost 
identical to that under the linearly elastic condition in the soil). For practical design, therefore, 
only the large external forces are considered in the criteria. 

These figures indicate that once the values of pg EE  and rF , as well as the phase lag rφ , 

are determined, the increment of the slenderness ratio Ha  can be evaluated from V-lines and G-
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lines indicating the percentage of the increment of the slenderness ratios Ha  for various 

combinations of pg EE  and rF . The slenderness ratios Ha  under the linearly elastic condition 

in the soil are also evaluated from solid curves indicating the slenderness ratios optHa . Herein, 

for the  purpose of practical applications, the phase lag π−  may be not appropriate: a completely 
opposite phase lag π−  may not usually occur between the inertial bending and the kinematic 
bending in the pile;  43π−  would be more appropriate than π−  as the maximum phase lag, in 
accordance with the design coefficients described in Murono and Nishimura (2000). So, the 
phase lag 43π−  is used in a criterion dealing with a large different phase lag as shown in Fig. 
13(c). 

Fig. 13 shows that the slenderness ratios Ha  at the local minima tend to increase almost 

linearly as rF  decreases and as the stiffness ratio pg EE  increases when the mean shear strain sγ  

is changed (V-lines). On the other hand, although the slenderness ratios Ha  tend to increase as 

the stiffness ratio pg EE  increases when the amplitude of the lateral load V  is changed (G-

lines), the slenderness ratios Ha  oscillate with rF ; different types of oscillations with rF  can be 
seen in the graphs with different phase lags. It is noted that within the range of possible lateral 
loads V  (≤1000 kN; the range of rF  is less than 5100.1 −×  in the G-lines) and possible mean 

shear strains of the soil medium sγ  (≤0.01; the range of rF  is greater than 5100.1 −×  in the V-

lines), the increment in the slenderness ratios Ha  at the local minima is at most around 20% of 
the slenderness ratio under the linearly elastic conditions. Although of limited scope, the results 
presented here are evaluated based on the SDM, focusing on a particular distribution pattern of 
the stiffness and the ultimate strength (cohesionless soil is assumed), as shown in Fig. 2. In 
addition, the soil spring used in this study is a simple approximate model, represented by a 
bilinear skeleton curve with a simple hysteretic loop for understanding the fundamentals of the 
optimal pile radius influenced by the local nonlinearity of the soil. 
 

CONCLUSIONS 

In the present study, the following may be concluded: 

1. This study presents the effects of a local nonlinearity in cohesionless soil upon the optimal 
radius minimizing the bending strain of a vertical, cylindrical fixed-head pile embedded in a 
layered soil stratum in a soil-pile-structure system where the kinematic interaction dominates. 
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Discretized numerical models are constructed based on the Seismic Deformation Method (SDM). 
In this study, the nonlinearity in the soil is represented by a simple approximate model, 
represented by a bilinear skeleton curve with a simple hysteretic loop. As a general expression for 
the bending strain at the head of the pile, the bending strain is normalized with respect to a mean 
shear strain of a soil stratum sγ  based on a series of previous studies. The present study shows 
the normalized bending strains for various parameters, such as the ratio of soil and pile stiffness 

pg EE , a factor rF , and a phase lag rφ , including different amplitudes of the lateral load V  

(also different amplitudes of the mean shear strain of the soil medium sγ ) for expressing a range 
of nonlinearities of the soil.  

2. Numerical results show that the normalized bending strain due to the inertial bending 
tends to increase for small slenderness ratio Ha  as the nonlinearity of the soil increases, 
whereas the normalized bending strain due to the kinematic bending tends to decrease. Therefore, 
an opposite change in the bending strains with Ha , due to the inertial bending and the 
kinematic bending, occurs due to the nonlinearity of the soil. Accordingly, the local minimum and 
the local maximum appearing in the normalized bending strains due to the inertial bending and 
the kinematic bending tend to be close, and the distance between the slenderness ratios associated 
with the local minimum and the local maximum tends to decrease as the nonlinearity of the soil 
increases. 

3. This study shows the slenderness ratio Ha  that locally minimizes the normalized 
bending strains for various amplitudes of the lateral load and the mean shear strain with different 

stiffness ratios pg EE and phase lags rφ . Numerical results indicate that the slenderness ratio 

increases due to the local nonlinearity in the soil as the amplitudes of the lateral load and the 
mean shear strain increase. The slenderness ratio also tends to increase as the stiffness ratio 

pg EE  increases.  

4. Criteria for predicting the increment of the optimal radius of soil-pile-structure systems 
under strong nonlinearity in the soil are presented. The criteria imply that the increment of the 
slenderness ratio Ha  at the local maxima is at most around 20% of the slenderness ratio under 
linearly elastic conditions within the range of various parameters presented here.  
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APPENDIX A. NOTATION 

 

The following symbols are used in this paper: 

a  = radius of pile; 

.optHa  = optimal slenderness ratio; 

bE  = Young’s modulus of bedrock; 

gE  = Young’s modulus of soil; 

giE   = Young's modulus in the i-th layer of soil 

pE  = Young’s modulus of pile; 

H  = length of pile; 

ih  = length of beam element in the i-th layer; 

I  = geometrical moment of inertia of pile; 

iK   = horizontal deformation of subgrade of the i-th layer of soil; 

e
iK   = initial stiffness of the horizontal subgrade spring of the soil at the i-th node 

of pile; 

rK  = rotational stiffness at the toe of pile; 

ik  = horizontal subgrade spring of soil at the i-th layer of soil; 

N  = total number of layers; 

e
iP  = ultimate strength of the horizontal subgrade spring of the soil e

iP  at the i-th 

node of pile; 

I
ip  = ultimate soil reaction of the i-th layer of soil; 

iφ  = angle of shearing resistance of the i-th soil layer; 

rφ  =   phase lag of lateral load with respect to mean shear strain; 

pu  = horizontal displacement of pile with respect to bedrock; 

siu  = relative displacement of the i-th soil layer with respect to bedrock; 
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V  = lateral load acting at top of pile; 

sV  = shear velocity of soil; 

sbV  = shear velocity of bedrock; 

iγ ′  = effective unit weight of the i-th soil layer; 

sγ  = mean shear strain of soil stratum; 

ν  = Poisson’s ratio of soil; 

bν  = Poisson’s ratio of bedrock; 

bρ  = mass density of bedrock; 

gρ  = mass density of soil. 
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Fig. 1 Discretized soil-pile-structure model for layered soil medium and a fixed-head pile 

supported by rotationally compliant bedrock. 
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Fig. 2 Discretized soil springs and subgrade reactions applied in numerical analyses. 
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Fig. 3 Variation of normalized bending strains with rF  in case of 10=V  kN for (a) inertial 

bending, (b) kinematic bending, (c) total bending, and (d) inelastic region nonH . ( 0=rφ  and 

001.0=pg EE .) 
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Fig. 4 Variation of normalized bending strains with rF  in case of 1000=V  kN for (a) inertial 

bending, (b) kinematic bending, (c) total bending, and (d) inelastic region nonH . ( 0=rφ  and 
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Fig. 7 Variation of normalized bending strains with rφ  for (a) individual bending; and (b) total 

bending in cases of (c, e) 10=V  kN and (d, f) 1000=V  kN. ( 5100.1 −×=rF  and 

001.0=pg EE .) 
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Fig. 8 Variation of normalized bending strains with pg EE  in case of 10=V  kN for (a) inertial 

bending, (b) kinematic bending, (c) total bending, and (d) inelastic region nonH . ( 5100.1 −×=rF  
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Fig. 9 Variation of normalized bending strains with pg EE  in case of 1000=V  kN for (a) 

inertial bending, (b) kinematic bending, (c) total bending, and (d) inelastic region nonH . 
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Fig. 10 Comparison of contours of normalized bending strains with pg EE  in cases of (a) 

10=V  kN and (b) 1000=V  kN( 5100.1 −×=rF  and 0=rφ .) 
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Fig. 11 Variation of optimal pile radius with rF  for various amplitudes of lateral load V  and 

different phase lags. (a, d, g) 0005.0=pg EE ; (b, e, h) 001.0=pg EE ; (c, f, i) 005.0=pg EE . 
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Fig. 12 Variation of optimal pile radius with rF  for various amplitudes of mean shear strain sγ  

and different phase lags. (a, d, g) 0005.0=pg EE ; (b, e, h) 001.0=pg EE ; (c, f, 

i) 005.0=pg EE . 
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Fig. 13 Criteria for evaluating the increment of slenderness ratios Ha that minimizes normalized 
bending strains at the head of a fixed-head pile with pg EE  and rF  when kinematic interaction 
dominates in soil-pile-structure systems under local nonlinearity in soil [(a) 0=rφ , (b) 

2πφ −=r , (c) 43πφ −=r ]. 
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