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ABSTRACT: This study focuses on how to determine an optimal radius minimizing the bending 
strains of vertical, cylindrical fixed-head piles embedded in a homogeneous elastic stratum in 
soil-pile-structure systems where the kinematic interaction dominates. In order to determine the 
appropriate radius, closed form formulae for the bending strains at the head of the piles are derived 
based on three-dimensional wave propagation theory. A general expression of the closed form 
formulae can be obtained by normalizing the bending strains with respect to a mean shear strain of 
the soil medium. The normalized bending strains can be expressed by the radius to height ratio of 
the piles, the ratio of soil to pile stiffness, and a factor representing the relative amplitude and the 
phase lag between the loading at the head of the piles and the deformation of the ground. The 
results of parametric analyses reveal the presence of an optimal radius that locally minimizes the 
bending strains of the piles. Criteria for determining the optimal radius of soil-pile-structure 
systems are presented.  
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INTRODUCTION 

Kinematic bending induced by the lateral deformation of soft soil surrounding a pile has become 
an important problem in geotechnical engineering because the kinematic bending may not be 
negligible when compared with the inertial bending induced by the inertial forces of a 
superstructure and a footing [Mizuno, et al. (1984), Ohira et al. (1985), Mizuno (1987), Tazoh et al. 
(1988), Kavvadas and Gazetas (1993), Kaynia and Mahzooni (1996), Mylonakis et al. (1997), 
Nikolaou et al. (2001), and Luo et al. (2002)]. Apparently, the kinematic bending and the inertial 
bending occur more or less at any resonant period in soil-pile-structure systems. In seismic design, 
therefore, the kinematic bending and inertial bending must be considered simultaneously when 
evaluating the performance of a pile. Various types of analytical and numerical methods have been 
proposed for estimating the dynamic response of soil-pile-structure systems in recent years [e.g., 
Kagawa and Kraft (1981), Takemiya and Yamada (1981), Wolf and Von Arx (1982), Kaynia 
(1982), Gazetas (1984), Tazoh et al. (1988), Kavvadas and Gazetas (1993), and Mylonakis et al. 
(1997)]. At present, therefore, the performance of a pile can be adequately evaluated by using 
these methods. 

Mylonakis et al (1997) indicate that the inertial bending would be significant, especially at 
the upper part of piles, when inertial responses with the fundamental period of soil-pile- structure 
systems are dominant (referred to in this study as the dominance of inertial interaction). On the one 
hand, the kinematic bending would be significant when soil motions with the natural periods of 
soil strata dominate (referred to in this study as the dominance of kinematic interaction). It was 
found in previous analytical and field studies that damage due to the kinematic bending may occur, 
especially at the following three parts along a fixed-head pile: (a) the head of the pile; (b) 
interfaces of soil layers with sharply different shear modulus or shear strength; and (c) the toe of 
the pile. In general, the damage due to the kinematic bending is dominant at the head of the pile in 
homogeneous strata, while in the case of layered soil strata, damage to the pile is caused at the 
interfaces of soil layers with strong discontinuities in stiffness and strength in the soil profile, as 
well as at the head of the pile. Nikolaou et al. (2001) show that the kinematic bending strains at the 
interfaces of soil layers sometimes surpass the bending strains at the head of the pile, depending on 
the ratio of the stiffness of the soil layers, the pile-soil stiffness contrast, the relative depth from the 
head of the pile down to the interface of the layers with respect to the length of the pile, etc. The 
kinematic bending strains at the toe of the pile may also dominate in cases of both homogeneous 
and layered soil strata when the toe is strongly restrained [e.g. Ohira et al. (1985)].  

In seismic design, therefore, the properties of the pile should be determined in 
consideration of both the inertial bending and the kinematic bending, simultaneously. In particular, 
it is important to determine the pile radius because the size of the radius directly affects the 
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bending stiffness (flexibility) of the pile EI , which consequently affects the seismic performance 
of the pile. In general, when an estimated bending strain exceeds its allowed limits, engineers may 
use various techniques for setting the radius, based on the concept that increasing the pile radius is 
an appropriate solution for decreasing the bending strains. This idea is obviously based on the 
assumption that the loading at the head of the pile strongly affects the response of the piles, while 
the deformation of the soil stratum is negligible. Therefore, such techniques would be applicable 
for cases where the inertial interaction dominates in soil-pile-structure systems. Moreover, it is 
expected that, in many cases, such techniques may find an optimal radius for the pile since the 
largest bending strain at the head of the pile may generally be controlled by the inertial interaction. 
To some extent, however, kinematic bending could also control the bending strain if the kinematic 
interaction is predominant. In fact, there have been few investigations into pile bending 
characteristics in systems where the kinematic interaction dominates. In practical engineering, 
therefore, no specific techniques for determining the optimal radius of a kinematically affected 
pile are available, even for the simplest case of a homogeneous soil profile.  

Accordingly, this study focuses on the bending strains at the head of vertical, cylindrical 
fixed-head piles embedded in a homogeneous elastic stratum, and the effect of the pile radius on 
the bending strains, in soil-pile-structure systems where the kinematic interaction dominates. 
Supported by the results of previous studies [e.g., Nikolaou et al. (2001)], the specific period 
particularly important in this study is the fundamental natural period of the homogeneous soil 
stratum. Analytical results evaluated by applying the Beam-on-Dynamic-Winkler-Foundation 
(BDWF) method indicate that the maximum values of the kinematic bending strains at the head of 
the piles occur at the fundamental natural period of soil strata for most soil profiles [Nikolaou et al. 
(2001)]. The above results imply that it would be worth investigating the behavior of the bending 
strains at the fundamental natural period of the soil stratum to understand their fundamental 
characteristics. 

The objectives of the present study are: (1) To obtain the fundamental relation between the 
radius and the bending strains at the head of the piles using three-dimensional wave propagation 
theory; (2) to show the presence of an optimal pile radius that minimizes the bending strains at the 
head of the piles; and (3) to derive criteria by which the optimal radius can be determined for 
soil-pile-structure systems.  

 

SYSTEM STUDIED 

The soil-pile-structure system is shown in Fig. 1. A vertical, cylindrical pile of radius a  is 
embedded in a homogeneous elastic stratum of thickness H . The toe of the pile is supported by a 
compliant bedrock. A cylindrical coordinate system, zr ,,θ , is considered, with the origin taken at 
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the center of the base of the pile. Complete bonding at the interfaces between the pile and soil 
medium is assumed. The toe of the pile is presumed to be restrained elastically against rotational 
movements by a spring of static stiffness rK  at the base. In this study, the stiffness rK  assumed is 
described by the following formula [Veletsos and Wei (1971)]: 
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where bρ , sbV , and bν  are the density, the shear velocity, and the Poisson’s ratio of the compliant 
bedrock, respectively. 

The material damping for the soil medium gh  is of a frequency-independent hysteretic type 

[Nogami and Novak (1977)]. The horizontal excitation of the base is assumed to be a steady-state 

vibration ti
g eu ω . The frequency of the horizontal excitation is assumed to be equal to the natural 

frequency of the soil medium, as explained above. The lateral load acting on the head of the pile, 
which is generated by the dynamic response of a superstructure and a footing, is represented by V . 

Theoretical models similar to the above, except for the condition of the toe of the pile, are used 
for deriving closed form formulae for the earthquake responses of piles [Tajimi (1969), Ohira et al. 
(1985)]. Based on these sophisticated known techniques, the closed form formula of the bending 
strains at the head of the pile can be derived for the present model.  

 

THEORETICAL SOLUTION 

The closed form formula is derived based on the theoretical model described above. The governing 
equations of the present model and the derivation of this formula are substantially identical to those 
described in Tajimi (1969) and Ohira et al. (1985). Therefore, the resultant formula is simply 
presented here without showing the derivation. It is found through the derivation that the bending 

strains at the head of the pile pε  normalized with respect to a mean shear strain of the soil medium 

sγ can be expressed in terms of the normalized parameters explained below. The mean shear strain 
is defined as the absolute value of the maximum harmonic response displacement of the ground 
surface with respect to the bedrock divided by the height of the soil medium H . The normalized 
parameters are: (1) the slenderness ratio (the radius to height ratio of the piles, Ha ); (2) the ratio 
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of the stiffness (Young’s Modulus) of the soil gE  and the pile pE  ( pg EE ); (3) the ratio of the 

stiffness of the soil gE  and the compliant bedrock bE  ( bg EE ); and (4) the ratio of the mass 

density of the pile pρ  and the soil gρ  ( gp ρρ ).  

The closed form formula of the normalized bending strains can be written as follows: 
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where the Poisson’s ratio of the soil medium is ν ; ( )mK  denotes the modified Bessel function of 
the 2nd kind of order m; and n  is the mode number of the Fourier series expanded in the vertical 
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direction. 

The first and the second terms of the closed form formula in Eq. (2) are associated with the 
kinematic bending and the inertial bending, respectively. It should be noted that the following 
non-dimensional factor, the coefficient of the second term, is directly responsible for the effect of 
the lateral load relative to the deformation of the soil medium: 
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It is obvious that if the above factor rf  and the aforementioned normalized parameters, including 

the material damping gh  and the Poisson’s ratios ν  and bν , are compatible with arbitrary 

soil-pile-structure systems, the normalized bending strains become equal to each other. The factor 

rf  is a complex value since a phase lag generally appears between the lateral load V  and the mean 
shear strain of the soil medium sγ . Therefore, this factor can be written by the following formula: 
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The factor rF  can be evaluated by estimating the maximum values of the lateral load V  and 
the mean shear strain sγ . In this study, the lateral load V is defined as an independent parameter 
that represents the base shear force of arbitrary superstructure and footing. Therefore, the lateral 
load V  is evaluated independently in this study. In general, the maximum value of the lateral load 
V  can be approximately estimated by using response spectra (base shear forces) for ground 
motions. On the one hand, the maximum value of the mean shear strain sγ  can be estimated by 
using deformation response spectra for ground motions at the bedrock, or, on the other hand, 
conventional numerical techniques such as SHAKE [Schnabel et al. (1972)] may be used. From the 
viewpoint of engineering practice, the factor rF  should be less than about 310− . 

The determination of the factor rφ  is difficult because there have been few investigations into 
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the phase lag between the lateral load V  and the mean shear strain sγ  (ground motion), especially 
in soil-pile-structure systems where the kinematic interaction dominates. Murono and Nishimura 
(2000) show fundamental characteristics of the phase lag between the lateral load and the ground 
displacement. The results of their study indicate that three types of phase lag predominantly occur. 
These are associated with the ratio of the natural period of a soil-pile-structure system sT  and the 

fundamental natural period of a soil medium gT  in a soil-pile-structure system where the kinematic 

interaction dominates, and are as follows: (1) In the case of 1≤gs TT , the phase lag of the lateral 

load with respect to the ground motion tends to become zero; (2) in the case of 1≈gs TT , the phase 

lag tends to become 2π− ; and (3) in the case of 1≥gs TT , the phase lag tends to becomes π−  

(in practice, 43π−  would be more appropriate, in accordance with the design coefficients 
described in their study). These characteristics can clearly be seen in the case where the input 
motion for the systems is assumed to be a harmonic wave whose fundamental period is identical to 
the fundamental natural period of the soil medium. Moreover, it should be noted that similar 
characteristics can also be seen in the case where earthquake waves are applied to the systems. This 
implies that the fundamental natural period of the soil medium dominates when these systems are 
subjected to earthquake waves. Therefore, the specific period focused on in this study is considered 
to be appropriate. Luo et al. (2002) verified the validity of the above characteristics through the 
application of the seismic deformation method (SDM) to a simulative analysis for pile foundations 
embedded in soft soil that experienced the Hyogoken-Nanbu earthquake. Accordingly, this study 
follows the phase-lag characteristics described above. 

 

NORMALIZED BENDING STRAIN AND OPTIMAL PILE RADIUS 

Fig. 2 shows the variations in normalized bending strains as functions of the slenderness ratio 
Ha with different values of the factor rF  for the phase lag 0=rφ . The absolute values of the 

normalized bending strains and related terms evaluated by Eq. 2 are shown. It is assumed in Fig. 2 

that the stiffness ratio 001.0=pg EE ; the stiffness ratio 05.0=bg EE ; the mass density ratio 

25.1=gp ρρ ; the material damping 05.0=gh ; and the Poisson’s ratios 45.0== bνν . Fig. 2(a) 

indicates that the normalized bending strain due to the inertial bending, which is identical to the 
second term of Eq. 2, significantly decreases as Ha  increases. When the factor rF  increases, the 
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strain gradually increases within the range of Ha  shown. Fig. 2(b) shows the variation in 
normalized bending strain due to the kinematic bending, which is identical to the first term of Eq. 2. 
There can be no variation of rF  since the bending strains are essentially independent of rF , as 
shown in Eq. 2. Therefore, a single line is shown in Fig. 2(b). The bending strains become zero 
when the slenderness ratio Ha  approaches zero. The bending strains increase almost linearly up 
to a local maximum ( 1.0≈Ha ), and gradually decrease beyond the local maximum. This 
indicates the presence of a worst-case slenderness ratio that maximizes the kinematic bending 
strain. From the viewpoint of engineering practice, typical slenderness ratios Ha  may range 
approximately from 01.0  to 1.0 . It is conceivable, therefore, that the normalized bending strain 
due to the kinematic bending may increase almost linearly as the slenderness ratio Ha  increases. 
It is noted that an opposite change in the bending strains with Ha , due to the inertial bending and 
the kinematic bending, occurs within the practical range of Ha . 

Figs. 2(c) and 2(d) indicate the presence of a local minimum area where the normalized 
bending strains due to both the inertial bending and the kinematic bending are minimized. In this 
case, the local minimum area occurs for small rF  (i.e., 5100.5 −×≤ ) within the practical range of 

Ha . This implies the presence of a slenderness ratio Ha  (that is, a radius) that can appropriately 
minimize the bending strains. The presence of this Ha  is apparently attributed to the opposite 
change in the inertial and kinematic bending strains with Ha . It should be noted that the presence 
of the local minimum may largely depend on the value of rF . 

Fig. 3 shows the variations in normalized bending strains with different values of the phase lag 

rφ  for the factor 5100.5 −×=rF . Assumptions identical to those in Fig. 2 are made in Fig. 3 for the 

non-dimensional parameters pg EE , bg EE , gp ρρ , the material damping gh , and the 

Poisson’s ratios ν  and bν . A single line is shown in each of Figs. 3(a) and 3(b) since each graph 
shows the absolute values of the normalized bending strains, which are independent of the phase 
lag rφ . Fig. 3(c) indicates that the normalized bending strains at the local minimum ( 05.0≈Ha ) 
gradually decrease as rφ  decreases, while the slenderness ratio Ha  minimizing the normalized 
strains do not substantially change with changes in rφ . Fig. 3 also indicates that when rφ  becomes 
π− , the normalized bending strains converge to zero. The reason for this is that the normalized 

bending strain due to the inertial bending becomes equal to that due to the kinematic bending, but 
in exactly the opposite direction. From a practical point of view, however, this may not be realistic 

because the phase lag rφ  probably converges to about 43π−  in the case where 1≥gs TT , as 

described by Murono and Nishimura (2000). 

Fig. 4 shows the effects of the stiffness ratio pg EE  upon the normalized bending strains for 
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the factor 5100.5 −×=rF  and the phase lag 0=rφ . The same assumptions in Fig. 2 and 3 are 
applied for the non-dimensional parameters in Fig. 4. Figs. 4(a) and 4(b) reveal that the normalized 
bending strain due to the inertial bending decreases over the entire range of Ha as the stiffness 

ratio pg EE  increases. In contrast, as pg EE  increases, the normalized bending strain due to the 

kinematic bending increases rapidly as the slenderness ratio Ha  locally maximizing the 
normalized bending strain increases. As a result, a local minimum area is generated for large 

pg EE (e.g., 310−≥ ), as shown in Figs. 4(c) and 4(d).  

Fig. 5 shows the variations in normalized bending strains with various values of the 

non-dimensional parameters bg EE , gh , gp ρρ , and ν  for the factor 5100.5 −×=rF , the phase 

lag 0=rφ , and 45.0=bν . Figs. 5(a), (b), (c) and (d) indicate that they have little effect upon the 

normalized bending strains. Especially for bg EE , this result means that differences in the degree 

of restraint of the rotational movement at the toe of the piles are almost negligible within the range 

of bg EE  shown in Fig. 5(a).  

 

CRITERIA FOR DETERMINING THE OPTIMAL PILE RADIUS 

Figs. 6 and 7 show criteria for easily estimating the slenderness ratio Ha  that locally minimizes 
the normalized bending strains in soil-pile-structure systems where the kinematic interaction 

dominates. These criteria are derived from Eq. 2 for 05.0=bg EE , 05.0=gh , 25.1=gp ρρ , 

and 45.0== bνν . These figures indicate that once the values of pg EE  and rF , as well as the 

phase lag rφ , are determined, the slenderness ratio Ha  can be evaluated from curves indicating 

the slenderness ratios Ha  for various combinations of pg EE  and rF . It is apparent that the 

optimal pile radius is equal to the product of the corresponding Ha  and the length of the pile H . 
In addition, these figures show the slenderness ratios Ha  that locally maximize the normalized 

bending strains for combinations of pg EE  and rF . In these figures, a factor rP  is also presented 

as a ratio (expressed as a percentage) of the normalized bending strain at the local minimum to that 
at the local maximum, as shown in Fig. 6(b). If the factor rP  is one-hundred percent, the 
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normalized bending strains at the local minimum and the local maximum are identical to each other, 
and usually the local minimum and the local maximum almost disappear. Therefore, as shown in 
Fig. 6(a) and Fig. 7, no slenderness ratio Ha  minimizing or maximizing the normalized bending 
strains appears in the region to the right of the rP =100% curve.  

  As a whole, it appears that the slenderness ratios Ha  at local minima increase as rF  

increases, while the ratios Ha  decrease as pg EE  increases. Moreover, it is noted that the 

factor rP  becomes small as pg EE  increases or as rF  decreases. This means that a substantial 

decrease in the normalized bending strains at the local minimum would be expected within a 

range of large pg EE  and small rF . In addition, this decrease seems to be more significant for 

small rφ  than for large rφ .  

Herein, we consider a typical soil-pile-structure system. The following properties of the 

system are considered: 20=H  m, 7105.2 ×=pE  kN/m2, 4108.5 ×=gE  kN/m2, 3100.5 −×=γ , 

and 0.400=V  kN. In case of a pile group, for instance, the lateral force V  can be approximated 
as the average lateral force acting on the piles. It is expected, however, that the precision of the 
optimal pile radius evaluated by this criteria will decrease to some extent if pile-to-pile 
interactions dominate among the piles. In this system, the phase lag rφ  is assumed to be 2π− . It 
is also assumed that there are no significant differences in the other non-dimensional parameters. 

The values of rFlog  and pg EElog  can be calculated as 10.5−  and 63.2− , respectively. 

Therefore, the following values are obtained from Fig. 7(a): the slenderness ratio Ha  at the local 
minimum of the normalized bending strains is about 023.0 ; the slenderness ratio Ha  at the 
local maximum is about 115.0 ; and rP  is about 34 %. Accordingly, the radius of the pile 
minimizing the bending strains at the head of the pile is about 46.0  m ( 20023.0 ×  m). The 
variation of normalized bending strains with Ha from the local minimum and the local 
maximum can be approximated as a straight line. Therefore, an approximate value of the ratio of 
the normalized bending strain at an arbitrary Ha  to that at the local minimum can be obtained 
by the following formula. 
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If it is assumed that the radius a  of the pile is, for instance, 8.0  m (the conventionally used value), 
the value of the ratio rD  can be estimated to be about 74.0 . This implies that a 26 % decrease in 
the bending strain would be expected if the radius a  were changed from 8.0  m to 46.0  m. In 
practical applications, therefore, Figs. 6 and 7, and also Eq. 5, may be useful for estimating the 
slenderness ratio Ha  (radius a ) that minimizes the bending strains at the head of the piles, and 
for evaluating the effect of the slenderness ratio Ha  upon the bending strains at arbitrary Ha  
using the factor rD .  

 

CONCLUSIONS 

In the present study, the following may be concluded: 

 

1. In order to evaluate the characteristics of the bending strains of fixed-head piles embedded in a 
homogeneous soil in soil-pile-structure systems where the kinematic interaction dominates, closed 
form formulae are derived using three-dimensional wave propagation theory. A general expression 
for the closed form formulae can be obtained by normalizing the bending strain with respect to a 
mean shear strain of a soil stratum sγ . It is found that the normalized bending strains can be 

expressed by the slenderness ratio Ha , the ratio of soil and pile stiffness pg EE , a factor rF , 

and a phase lag rφ , which represent dynamic characteristics of loading at the head of the piles and 
deformation of the soil.   

2. The normalized bending strain due to the inertial bending decreases rapidly as the slenderness 
ratio Ha  increases. On the one hand, the normalized bending strain due to the kinematic bending 
becomes zero when Ha  is zero, whereas the normalized bending strain has a local maximum in a 
higher Ha  region and gradually decreases beyond the local maximum. The variation of 
normalized bending strains with Ha  indicates that a slenderness ratio Ha (radius) that 
minimizes the normalized bending strains at the head of the piles may appear, depending on the 

values of pg EE , rF , and rφ . In addition, a local maximum of the normalized bending strain 

mainly due to the kinematic bending may also appear in the higher Ha  region. Parametric studies 

indicate that the local minimum is more easily generated as rF  becomes smaller or as pg EE  

becomes larger. Moreover, the normalized bending strains at the local minimum gradually 
decreases as the phase lag rφ  decreases. 

3. Criteria are provided for easily estimating the pile radius that minimizes the normalized bending 
strains. It is noted that the factor rP , the ratio of the normalized bending strain at the local 
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minimum and that at the local maximum, becomes small as pg EE  increases or as rF  decreases. 

From these criteria, effects of the slenderness ratio Ha  at the local minimum upon the normalized 
bending strains at arbitrary values of Ha can also be estimated using the factor rD .  
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APPENDIX A. NOTATION 

 

The following symbols are used in this paper: 

a  = radius of pile; 

( ).MaxHa  = slenderness ratio of pile at local maximum of bending strain; 

( ).MinHa  = slenderness ratio of pile at local minimum of bending strain; 

bE  = Young’s modulus of bedrock; 

gE  = Young’s modulus of soil; 

pE  = Young’s modulus of pile; 

gh  = damping constant of soil; 

H  = length of pile; 

I  = geometrical moment of inertia of pile; 

1−=i  = imaginary unit; 

mK  = modified Bessel function of the 2nd kind of order m; 
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rK  = rotational stiffness at the toe of pile; 

n  = mode number of the Fourier series expanded in the vertical direction; 

t  = time; 

gu  = amplitude of horizontal excitation; 

V  = lateral load acting on the top of pile; 

sbV  = shear velocity of bedrock; 

sγ  = mean shear strain of soil stratum; 

ν  = Poisson’s ratio of soil; 

bν  = Poisson’s ratio of bedrock; 

gρ  = mass density of soil; 

pρ  = mass density of pile; 

ω  = circular frequency. 
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Fig.1 Analytical soil-pile-structure model for a homogeneous soil medium and a fixed- head pile 

supported by rotationally compliant bedrock: the system is excited by vertically-propagating 

S-waves 
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Fig.2 Variation of normalized bending strains with rF  [(a) inertial bending (b) kinematic bending 

(c) total bending (d) contours of normalized bending strains sp γε ]: 0=rφ  and 001.0=pg EE  
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Fig.3 Variation of normalized bending strains with rφ  [(a) inertial bending (b) kinematic bending 

(c) total bending (d) contours of normalized bending strains sp γε ]: 5100.5 −×=rF  and 

001.0=pg EE  
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Fig.4 Variation of normalized bending strains with pg EE  [(a) inertial bending (b) kinematic 

bending (c) total bending (d) contours of normalized bending strains sp γε ]: 5100.5 −×=rF  and 

0=rφ  
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Fig.5 Variation of normalized bending strains with various parameters [(a) bg EE  (b) gh  

(c) gp ρρ  (d)ν ]: 5100.5 −×=rF  and 0=rφ  
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Fig.6 Criteria for evaluating slenderness ratios Ha that minimizes normalized bending strains at 

the head of a fixed-head pile with pg EE  and rF  when kinematic interaction dominates in 

soil-pile- structure systems [(a) criteria for 1≤gs TT ( 0=rφ ) (b) definition of corresponding 

factors in Ha - sp γε  relations] 
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Fig.7 Criteria for evaluating slenderness ratios Ha that minimizes normalized bending strains at 

the head of a fixed-head pile with pg EE  and rF  when kinematic interaction dominates in 

soil-pile- structure systems [(a) for 1≈gs TT ( 2πφ −=r ) (b)for 1≥gs TT ( 43πφ −=r )] 

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0
-4.0

-3.5

-3.0

-2.5

-2.0
0.15
0.14
0.13
0.12

0.11

0.10

0.09

0.08

0.07

a/H(Max.)=0.06

 lo
g 

(E
g/E

p)

80
%

0.090.080.070.060.050.040.030.02a/H(Min.)=0.01

10
0%

90
%

70
%60

%50
%40

%
30

%
P r=

20
%

log Fr

(a) 

-6.0 -5.5 -5.0 -4.5 -4.0 -3.5 -3.0
-4.0

-3.5

-3.0

-2.5

-2.00.15
0.14
0.13

0.12
0.11

0.10

0.09

0.08

0.07

a/H(Max.)=0.06

lo
g 

(E
g/E

p) 

80
%

0.090.080.070.060.050.040.030.02a/H(Min.)=0.01

10
0%90
%70

%60
%50

%40
%

30
%

20
%

P r=
10

%

log Fr

(b) 


