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independent spring and dashpot, together with a proposed element called “gyro-mass”. The 
gyro-mass is frequency-independent and is defined as a unit system that generates a reaction force 
due to the relative acceleration of the nodes between which the gyro-mass is placed. It is found that 
a model consisting of a spring, dashpot and gyro-mass may generate various types of 
frequency-dependent impedance characteristics. This study proposes two types of simple models 
that express typical frequency-independent impedance functions of soil-structure interactions by 
using the gyro-mass. The advantage of these models is that the frequency-dependent characteristics 
can easily be expressed by a small number of elements and degrees of freedom. Moreover, they can 
be applied directly to conventional time-history analyses, even beyond the elastic region of the 
structural members. An example in which a simple model is applied to the time-history analysis of 
a soil-pile-superstructure system with an inelastic structural member when subjected to an 
earthquake wave is illustrated. 
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INTRODUCTION 

Soil-structure interaction (SSI) problems have been studied for about half a century. At present, 
the characteristics of impedance functions for various soil-structure systems can be estimated with 
a certain precision by various sophisticated techniques. In general, impedance functions show 
frequency-dependent characteristics, such as when the soil deposit has layered strata, or the shape 
and structure of the foundations are complicated, for example, pile groups etc. Therefore, although 
impedance functions are inappropriate for time-history analysis because of their frequency 
dependence, they can easily be applied in the frequency domain. However, analyses in the 
frequency domain are fundamentally restrained within the elastic region of material properties 
under linear boundary conditions. In contrast, many recent studies of structural dynamics have 
focused on the inelastic behavior of structural systems because the methodology of 
performance-based seismic design, which has been applied to seismic codes and guidelines in 
many countries, allows modeling of the inelastic behavior of structural systems. At present, a 
number of constitutive models of materials and structural members have been proposed, allowing 
the inelastic behavior of structural systems during earthquakes to be estimated appropriately. In 
general, the constitutive models are applied to step-by-step numerical procedures in the time 
domain because the inelastic behavior of materials and structural members strongly depends on 
the stress path being integrated stepwise. 

In general, impedance functions in SSI show the following typical frequency-dependent 
characteristics: (a) cut-off frequency below which the damping is negligible and above which the 
damping increases rapidly (e.g. Novak and Nogami (1977), Nogami and Novak (1977), Kausel 
and Roesset (1975), Elsabee and Morray (1977), Takemiya and Yamada (1981)); (b) slight 
oscillation shown in soil reaction and surface rigid foundations or embedded rigid foundations (e.g. 
Baranov (1967), Beredugo and Novak (1972), Novak (1974), Novak et al. (1978), Veletsos and 
Dotson (1988), Gazetas (1991)); and (c) multiple oscillations typically exhibited in pile groups 
(e.g. Kaynia and Kausel (1982), Dobry and Gazetas (1988), Makris and Gazetas (1993), 
Mylonakis and Gazetas (1998)). A variety of methods and techniques by which the frequency- 
dependent impedance functions can be considered in a time-history analysis have been proposed. 
From a practical point of view, the most powerful and acceptable tool, not only in the SSI field but 
also in other engineering fields, is a simple model approximately representing the impedance 
functions by using the frequency-independent elements of spring, dashpot, and mass [e.g. Meek 
and Veletsos (1974), Wolf and Somaini (1986), Nogami and Konagai (1986, 1988), Wolf (1994), 
Wolf and Song (2002)]. The reason for this is that the frequency-independent elements can be 
applied directly to conventional structural analysis. In recent years, various types of simple models 
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consisting of these elements (generally called spring-dashpot-mass models) have been proposed 
for soil reaction, shallow foundations, embedded foundations, etc. Although increasing the 
number of elements and degrees of freedom results in more accurate fitting to the ideal impedance 
functions, in practical applications, simple models having a small number of elements and degrees 
of freedom are used. In general, however, such simple models show a moderate variation with 
frequency, and thus do not express the frequency-dependent impedance functions with sufficient 
accuracy.  

Moreover, as discussed later, spring-dashpot-mass models are generally not independent 
systems, so that careful handling is required in the case of seismic excitation when applying them 
to structural models. Therefore, a simple model that is independent and that can appropriately 
represent such impedance functions is desired in order to reflect the frequency-dependent 
characteristics of impedance functions in time-history analysis. 

The objectives of the present study are: (1) To introduce a frequency-independent element 
as an important tool to generate various types of impedance functions; (2) to propose two types of 
simple models approximately comparable to impedance functions with cut-off frequencies and 
impedance functions with frequency-dependent oscillations, respectively; (3) to provide the 
formulae for the impedance functions of the proposed model based on not only dimensionless 
frequency expressions but also matrix expressions that can directly be incorporated into the 
conventional structural models; (4) to show examples in which typical impedance functions are 
simulated by the proposed model, not only in the frequency domain but also in the time domain; 
and (5) to show an example in which the proposed model is applied to the time-history analysis of 
a soil-pile-superstructure system including an inelastic structural member when subjected to an 
earthquake wave. The purpose of this paper is not to provide specific coefficients of the elements 
by which approximate impedance functions can be easily estimated for individual foundations, but 
to present a methodology by which a simple model can be made for arbitrary impedance functions. 

 

 

 

INTRODUCTION OF PROPOSED FREQUENCY-INDEPENDENT ELEMENT 

A representative simple spring-dashpot-mass model used in structural analysis is shown in Fig. 1 
(a). To the author’s knowledge, this system was first applied by Penzien et al. (1964) as a 
frequency-dependent soil reaction. The equilibrium equation of this system is formulated as 

 

kuucumF ++= &&&                                                                (1) 
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where m  is the mass; c  and k  are the damping coefficient and spring coefficient, respectively; 
F is the external force; and u  is the relative displacement of the system. 

When a harmonic excitation is assumed, Eq. 1 can be written as 

 

uKF ∗=                                                                     (2) 

where ( ) ωω icmkK +−=∗ 2 , ∗K  being the impedance function of this system, and ω  being the 
circular frequency. According to Eq. 2, the real part of the impedance function, which represents 
the stiffness of this system, shows a frequency-dependent characteristic: it decreases gradually as 
the excitation frequency increases due to the mass effect ( 2ωm− ). On the other hand, the 
imaginary part representing the damping effect of the system linearly increases. The above model 
can be directly used as the impedance function of a soil-foundation system for problems where the 
structure is excited by loads due to machine vibrations etc. In the case of seismic excitation, 
however, this has a serious drawback, described below.  

Assume that a dynamic displacement gu  is given to the node at the right hand side, as 

shown in Fig. 1 (b). The node at the left hand side is assumed to be free. The dynamic displacement 

gu  is analogous to the free-ground response, or the effective foundation input motion in the case of 

seismic excitation. The relative displacement u  appears to be due to the inertial force gum && . In 

contrast, the actual impedance function generates no relative displacement because it is not actually 
an oscillator. Practically, therefore, a virtual force is given to the mass for offsetting the inertial 

force gum && , as shown in Fig. 1 (c). This technique was initially applied to the analysis of 

soil-pile-structure systems in Penzien et al. (1964). This treatment implies that the 
spring-dashpot-mass system is, in a sense, not an independent system. In addition, there might be a 
fatal discrepancy between the physical description of the simple model and the actual treatment 
mentioned above. This discrepancy may induce structural engineers to misunderstand the actual 
structural systems. From a practical point of view, therefore, careful handling is required when 
applying such oscillators to structural models. 

The simple model should have various frequency dependencies and, in addition, should 
(a) exhibit independence as a unit impedance system, and (b) describe the system in an identical 
manner to the actual treatment in the analysis. These characteristics are desired by structural 
engineers when the frequency-dependent characteristics of impedance functions are considered in 
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structural analysis. 

These desired characteristics can be achieved, to a certain extent, if a so-called 
“gyro-mass” element is introduced in the simple model. The gyro-mass is a frequency-independent 
element that has the same dimension as mass. It is defined as an independent unit system that 
generates a reaction force due to the relative acceleration of the nodes between which the 
gyro-mass is placed, as shown in Fig. 2 (a). The gyro-mass shown in Fig. 2 (a) can be approximated 
by the simple mechanical analogy shown in Fig. 2 (b). The mechanical analogy consists of a 
rotational disk and a rod attached to the disk with strong friction, gears for instance. It is assumed 
that the mass of the rod is negligible. The disk rotates with rotational acceleration θ&&  as an external 
force F is given to the rod. The relative acceleration of the rod u&&  with respect to the fixed node at 
the right hand side is geometrically related to the rotational acceleration θ&& . Consequently, the 
following relation between the external force F and the relative acceleration u&&  can be obtained: 

 

umF &&=                                                                  (3) 

where 

2r
Jm ∝ .                                                                   (4) 

 

Here, r  is the distance from the center of the disk to the point where the rod is attached; J  is the 
moment of inertia of the disk; and m  is the equivalent mass generated by the rotation of the disk. 
Thus, the reaction force at the left hand side of the rod is identical to the product of the equivalent 
mass m  and the relative acceleration u&& . Accordingly, the equivalent mass m  is termed 
“gyro-mass” in order to be distinguished from ordinary mass. The above analogy is only an 
example for explaining the physical feasibility of the gyro-mass element. It is noted that the 
gyro-mass is not always defined by Eq. 4, but may be defined arbitrarily. In general, the originality 
of the gyro-mass element proposed in this study lies in its perfect independence: it can take 
arbitrary values, and it can be freely arranged either in parallel or in series with the other elements 
in a simple model. The fundamentals of the gyro-mass are explained below. 

When an external force F  is given to the node at the left hand side of an arbitrary 
gyro-mass m and the other node is fixed, as shown in Fig. 2 (a), the equilibrium equation can be 
expressed by Eq. 3. When a harmonic excitation is assumed, Eq. 3 can also be expressed by the 
following formula: 

 

uKF ∗=                                                                     (5) 
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where the impedance function 2ωmK −=∗ . That is, it is found that the impedance function of a 
gyro-mass becomes a negative value that is proportional to the second power of the excitation 
frequency. 

 Consider the model shown in Fig. 3 (a) in which a gyro-mass is used. The equilibrium 
equation of this model can be expressed as 

 

kuucumF ++= &&& .                                                          (6) 

 

When a harmonic excitation is assumed, Eq. 6 can be rewritten as follows: 

 

uKF ∗=                                                                       (7) 

 

where the impedance function ( ) ωω icmkK +−=∗ 2 . That is, it is found that the impedance 
function of this model is identical to that of the aforementioned simple spring-dashpot-mass system 
(Eqs. 1 and 2) if the gyro-mass m  and the mass m  have the same value. Moreover, it is noted that 
the simple model including a gyro-mass becomes an independent system that satisfies the 
above-mentioned requirement (a) since no ordinary mass is used. In addition, the description of the 
model shown in Fig. 3 (a) is compatible with the equilibrium equation derived directly from it. 
Accordingly, the actual treatment of the model in the structural analysis becomes identical to the 
configuration in Fig. 3 (a) and Eq. 7. Thus, it is conceivable that the model also satisfies the 
requirement (b). 

In matrix representation, which can be directly applied to conventional structural models, 
the relation between the external forces ( 1f  and 2f ) and the absolute displacements ( 1u  and 2u ) at 
both nodes of the gyro-mass shown in Fig. 2 (c) can be written as follows: 
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It is apparent that the relation of a spring comparable to Eq. 8 can be expressed by the following 
formula: 
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Therefore, the matrix of the gyro-mass can be easily incorporated into structural models, in 
addition to a spring and a dashpot. Herein, it is presumed that the mechanical analogy of a 
gyro-mass having free nodes at both sides is difficult to realize perfectly due to the appearance of 
the inertial force of the disk itself in the lateral direction. In order to enhance the feasibility, the 
gyro-mass should have a much larger value than the mass of the disk itself. This should be easily 
accomplished by means of the following conventional techniques used in mechanical engineering: 
(1) increasing the radius of gyration of the disk by concentrating the mass at the edge of the disk; 
and (2) increasing the rotational acceleration of the disk by combinations of disk gears. These 
techniques make the ordinary mass of the disk negligible when compared with the gyro-mass in the 
system. This issue can be thought of as being analogous to the intrinsic mass of the spring and 
dashpot in actual mechanical systems. 

 The simple model shown in Fig. 3 (b) is also expressed by the following formula: 
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This model is very useful, as described later. Therefore, it is defined as a “base system” in this 
study.  

PROPOSED SIMPLE MODELS 

In this study, typical impedance functions observed in SSI problems are tried to be simulated by 
using two types of simple models consisting of spring, dashpot and gyro-mass. Hereinafter, a 
simple model that expresses the cut-off frequency is defined as Type I, while the other model that 
expresses the frequency-dependent oscillations of impedance functions is defined as Type II. 

 

SIMPLE MODEL: TYPE I 

The cut-off frequencies appear in impedance functions of shallow foundations, embedded 
foundations, and pile foundations, mainly attributable to the effects of layered strata. A simple 
model is shown in Fig. 4 (a). The model consists of two unit systems: one is the base system 
mentioned above; and the other is a series system composed of a gyro-mass m and a unit having a 
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spring k  and a dashpot c  arranged in parallel (this series system is defined as a “core system” of 
the Type I model). The two systems are arranged in parallel in this model. First, the fundamental 
characteristic of the base system is described below, and the characteristic of the core system is 
described later. 

 

 

Base System 

The spring, dashpot, and gyro-mass of the base system are defined as K , C  and M , respectively. 
Referring to the expressions of Wolf and Somaini (1986), the dimensionless frequency 0a  and the 
dimensionless coefficients of the damper 0γ  and gyro-mass 0μ  are introduced as 

 

sc
aa ω

=0                                                                           (11a) 

0γK
c
aC

s

=                                                                        (11b) 

02

2

μK
c
aM

s

=                                                                       (11c) 

 
where a  represents a characteristic length of the foundation (e.g. the radius of a disc) and sc  
denotes the shear wave velocity. The equilibrium equation of the base system is analogous to Eq. 7. 
Substituting Eq. 11 into Eq. 7 yields 

 

( ) ( ) ( )000
2
000 1 auaiaKaF γμ +−= .                                                     (12) 

 

Fig. 5 shows the variation of the impedance functions given by Eq. 12. Fig. 5 shows that the 
stiffness (the real part of the impedance function) decreases gradually as the excitation frequency 
increases. This decrease in the stiffness becomes significant as the coefficient of the gyro-mass 0μ  
increases. On the one hand, the damping (the imaginary part of the impedance function) increases 
linearly as the frequency increases. The coefficient of the damper 0γ  is associated with the 
gradient of the damping.  

 

Core System of Type I model 
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When an external force F  is given to the node at the left hand side of the core system and the other 
node is fixed, as shown in Fig. 4 (b), the equilibrium equation of the core system can be expressed 
as follows: 

 

IumF &&Δ=                                                                          (13a) 

EE ucukF &Δ+Δ=                                                                    (13b) 

 

where IuΔ  is the relative displacement of the gyro-mass and EuΔ  is the relative displacement of 
the spring and the dashpot. The total relative displacement u  of this system becomes the sum of 
the relative displacements IuΔ  and EuΔ . When a harmonic external force is assumed, the 
following relation can be derived from Eqs. 13a and 13b: 
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The dimensionless coefficients of the damper 1γ  and the gyro-mass 1μ  are introduced as: 
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By using Eq. 15, Eq. 14 can be transformed to 
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Fig. 6 shows the 0a  variation of the impedance function of the system. Fig. 6 (b) indicates that the 
damping increases rapidly around the dimensionless frequency 10 =a . This characteristic is quite 
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analogous to typical impedance functions having a cut-off frequency. On the other hand, the 
stiffness becomes zero in the lower frequency region, and it tends to show a local minimum around 
the cut-off frequency, as shown in Fig. 6 (a). In addition, it is found that the impedance function 
changes substantially as the coefficient of the damper 1γ  decreases. Therefore, the coefficient 1γ  
is associated with the sensitivity of the impedance function to the cut-off frequency. The cut-off 
frequency is considered to be almost identical to the singular point of Eq. 16 when the coefficient 

1γ  takes a very small value. Thus, the cut-off frequency is defined as 

 

1

1
μ

=ca .                                                                       (17) 

 

Therefore, it is noted that the coefficient of the gyro-mass 1μ  is associated with the cut-off 
frequency of the core system.  

The reason why the cut-off frequency appears in the core system consisting of only three 
elements can be explained as follows. In the lower frequency region, the characteristic of the 
impedance function of the core system is highly influenced by the impedance function of the 
gyro-mass since the impedance function of the gyro-mass becomes smaller than that of the unit 
composed of the spring k  and the dashpot c ; that is, the displacement of the core system is mainly 
generated by the gyro-mass in this frequency region. In contrast, in the higher frequency region, the 
characteristic of the impedance function of the core system is highly influenced by the impedance 
function of the unit composed of the spring k  and the dashpot c  since the impedance function of 
this unit becomes smaller than that of the gyro-mass; that is, the displacement of the core system is 
mainly generated by this unit in the higher frequency region. Therefore, the cut-off frequency is 
almost identical to the frequency around which the impedance function of the core system changes 
from that of the gyro-mass to that of the spring/dashpot unit.  

 

Total System of Type I model 

In the Type I model, the core system and the base system are arranged in parallel. Hence, the 
impedance function of this model is consistent with the sum of both impedance functions. 
Referring to Eqs. 12 and 16, the equilibrium equation of Type I is expressed by the following 
formula: 
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where Kk=1β . 

 
In this model, the coefficient K  is compatible with the static stiffness ( 00 =a ). 1β  denotes the 
weight function of the core system with respect to the base system. In principle, the other 
coefficients used in this model play the same role as shown in the individual systems described 
above since the base system and the core system are merely arranged in parallel. It is noted that the 
important feature of this model is that the characteristics of the individual parameters are identified 
so that the fitting of impedance functions by using this model is fairly easy. At present, manual 
fitting is the main technique used for simulating arbitrary impedance functions in this study. In 
future, a more advanced numerical fitting technique may be developed. 

 Fig. 7 shows a comparison of the impedance functions of a pile in vertical vibration 
evaluated using Eq. 18 with published results of a rigorous solution (Novak and Nogami (1977)). 
The properties assumed in the rigorous solution were as follows: slenderness ratio 400 =rH ; 
mass ratio 6.0=ρ ; damping ratio of soil 02.0=D ; Poisson’s ratio 0=ν ; and dimensionless 
parameter related to the stiffness ratio 10=Y . This impedance function is a typical function 
having a cut-off frequency. Fig. 7 indicates that the behavior around the cut-off frequency 
( 05.00 ≅a ) exhibited in the rigorous solution is very similar to that of the simple model proposed 
here. Apparently, the installation of the gyro-mass in the core system is responsible for the 
appearance of the local minimum of the stiffness and the rapid increase of the damping around the 
cut-off frequency.  

Fig. 8 (a) also shows the comparison of the impedance functions of a pile in horizontal 
vibration evaluated using Eq. 18 with published results of the rigorous solution (Novak and 
Nogami (1977)). The properties assumed in the rigorous solution were the same as the above, 
except for the dimensionless parameter 1000=Y . In the simulation, the dimensionless static 

stiffness IEHK p
3*  ( 00 =a ) is assumed to be 0.226 , where pE  and I  are the Young’s modulus 

and the geometrical moment of inertia of the pile, respectively. 

Since the simple model exhibits only one cut-off frequency, the double cut-off frequencies 
appearing around the dimensionless frequencies 05.00 =a  and 15.00 =a  in the rigorous solution 
cannot be simulated sufficiently if the higher frequency region is considered to be important. In 
order to enhance the precision of the simulation, if needed, an additional core system having 
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different coefficients can be arranged in parallel with the Type I model. Fig. 8 (b), which shows the 
simulated impedance functions of this revised model, shows that two cut-off frequencies appear in 
the impedance functions of the model. In addition, the behavior of the impedance functions is also 
very similar to the rigorous solutions over the entire dimensionless frequency range. Herein, the 
impedance functions of a generalized Type I model having multiple core systems, shown in Fig. 9, 
can be expressed by the following formula: 
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where iγ , iμ , and iβ  are, respectively, the dimensionless coefficients of the damper and the 
gyro-mass, and the stiffness ratio of the i th core system shown in Fig. 9; and N is the total number 
of core systems. 

 

 

SIMPLE MODEL: TYPE II 

Hereinafter, typical impedance functions having frequency-dependent oscillations are simulated by 
a Type II model. The simple model is shown in Fig. 10 (a). The Type II model consists of two unit 
systems: one is the base system described above; and the other is a series system composed of a 
spring k  and a unit having a gyro-mass m  and a dashpot c  arranged in parallel (this series system 
is also defined as a core system of the Type II model). The base system and the core system are 
arranged in parallel. 

 

Core system of Type II model 

The core system of the Type II model is identical to a system in which the positions of the spring 
and the gyro-mass in the core system of the Type I model are exchanged. Referring to the 
derivation shown in the Type I model, the relation between the external force F  and the relative 
displacement u of the core system of the Type II model shown in Fig.10 (b) can be obtained  as 
follows: 
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By using the dimensionless frequency and the dimensionless coefficients, Eq. 20 can be 
transformed to 

 

( ) ( )
( ) ( )

( )02
0

2
1

22
01

1
02

0
2
1

22
01

2
0

2
1

2
01

2
01

0
11

1
au

aa
ai

aa

aaa
kaF

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−
+

+−

+−
=

γμ

γ

γμ

γμμ
.                         (21) 

 
Fig. 11 shows the 0a  variation of the impedance function of the core system. It is found that a 
variety of impedance functions of the system can be generated as the coefficient of the damper 1γ  
changes. Fig. 11 indicates that the stiffness changes substantially, whereas the damping exhibits a 
local maximum around the dimensionless frequency 10 =a  when the dimensionless coefficient 1γ  
takes a small value. The reason for this is that the impedance function of this core system has a 
singular point when the coefficient 1γ  takes a very small value. This characteristic is identical to 
that of the core system in the Type I model. Therefore, this resonant frequency is the same as the 
cut-off frequency in the Type I model obtained from Eq. 17.  

 

Total system of Type II model 

The equilibrium equation of the Type II model is expressed as the sum of Eqs. 12 and 21, as 
follows: 

 

( ) ( )[ ]
( ) ( )

( )002
0

2
1

22
01

11
0

2
002

0
2
1

22
01

2
0

2
1

2
01

2
011

0
11

1
1 au

aa
aia

aa

aaa
KaF

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

+−
+−

+−

+−
+= γ

γμ

γβ
μ

γμ

γμμβ
         (22) 

 

Hereinafter, representative impedance functions having the two types of oscillation mentioned 
above are simulated by using the Type II model.  

Fig. 12 shows a comparison of the impedance functions of soil reaction in horizontal and 
vertical vibrations simulated by the Type II model with the published results of a rigorous solution 
(Novak (1974)). The dimensionless coefficients used in this analysis are shown in Table. 1. The 
impedance functions are normalized by the shear modulus of the soil sG . It is assumed that these 
impedance functions are typical functions having a slight oscillation. Fig. 12 shows that the 
impedance functions simulated by the Type II model are very similar to those of the rigorous 
solution. Since the Type II model is a three-degree-of-freedom system with a total of six elements, 
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this model can simulate the impedance function with fewer elements and degrees of freedom than 
the models proposed previously, and with almost the same precision. Moreover, it is noted that the 
present model consists of no ordinary mass; therefore, the model can be treated as an independent 
system. 

Fig. 13 shows a comparison of a horizontal impedance function of a 2 × 2 pile group 

(stiffness ratio of pile to soil 1000=sp EE , slenderness ratio 15=dH , Poisson’s ratio 4.0=ν , 

material damping of soil 05.0=sβ ) simulated by the Type II model with the published results of a 
rigorous solution (Kaynia and Kausel (1982)) for a variety of dS  ratios, where S  is the 
axis-to-axis distance of the piles and d  is the diameter of the piles. The dimensionless coefficients 
used in this analysis are shown in Table 2. Figs. 13 (a) and (b) show the results simulated by using 
the Type II model with a single core system. The agreement is good below the dimensionless 
frequency at which the local maxima of the impedance functions appear. In the higher frequency 
region, however, a discrepancy appears between the simulated impedance functions and the 
rigorous solution. In order to enhance the precision of the simulation, if needed, an additional core 
system having different coefficients can be arranged in parallel with the Type II model. For 
example, Figs. 13 (c) and (d) show the simulated impedance functions of a revised model 
consisting of double core systems. The results show better agreement between the simulated results 
and the rigorous solution in the higher frequency region than the model having a single core system. 
Herein, the impedance functions of the generalized Type II model having multiple core systems 
shown in Fig. 14 can be expressed by the following formula: 
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(23) 

 

 

MATRIX EXPRESSIONS OF SIMPLE MODELS 

As mentioned above, the matrix representation of the simple models is very convenient in practice 
since this representation is directly applicable to conventional structural models. Therefore, the 
matrix expressions of both simple models are presented below. 

 The core system of the Type I model shown in Fig. 4 (a) can be formulated as 
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where 1u , 2u  and 3u  are the absolute displacements of the nodes; and 1f , 2f  and 3f  are the 
external forces of the nodes.  

Therefore, referring to Eq. 10, the Type I model can be expressed as: 
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Moreover, the generalized Type I model shown in Fig. 9 can be formulated as: 
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where, 
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where iu2  is the absolute displacement of the node in the i th core system; and ic , im , and ik  are, 
respectively, the coefficients of the damper, the gyro-mass, and the stiffness of the i th core system 
shown in Fig. 9. 

Recall that the difference between the Type I and Type II models is that the positions of the spring 
and the gyro-mass in the core system are merely exchanged. Therefore, the Type II model shown in 
Fig. 10 (a) can be expressed as follows: 
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Moreover, the generalized Type II model shown in Fig. 14 can be expressed by the same equation 
as Eq. 26 (a), except for the components of [ ]NM  and [ ]NK , which are: 
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COMPARISON WITH IMPEDANCE FUNCTIONS IN TIME DOMAIN 

A comparison of the impedance functions evaluated in the frequency domain with those evaluated 
in the time domain is shown below. For this comparison, the generalized Type II model shown in 
Fig. 14 is used. The properties of the dimensionless coefficients are identical to the model in the 
case of 10=dS  shown in Table. 2. In this analysis, the parameter sca  and the static stiffness K  
are assumed to be 0.02 sec and 240000 kN/m, respectively. Referring to Eqs. 11 and 15, the 
coefficients of this model can be estimated as follows: 2256001 =k  kN/m; 2400002 =k  kN/m; 

864=C  kN-sec/m; 180481 =c  kN-sec/m; 28802 =c  kN-sec/m; 8.124=M  t; 9.7211 =m  t; and 
2.912 =m  t. As a numerical integration scheme, Newmark’s β  method is applied ( 61=β ). In 

the analysis, a harmonic external force is given to the node at one side of the model shown in Fig.14, 
and the node at the other side of the model is fixed. Fig. 15 shows a comparison of the impedance 
function in the frequency domain evaluated directly from Eq. 23 with the solutions based on Eqs. 
26 and 28 in the time domain. Good agreement between the frequency-domain and time-domain 
impedance functions can be seen in the figure. It is noted, therefore, that the frequency-dependent 
impedance functions can be precisely expressed by using the simple models in the time domain. 
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APPLICATION TO NONLINEAR TIME-HISTORY ANALYSIS 

This study shows an example of time-history analysis of a structural system subjected to an 
earthquake wave. As shown in Fig. 16, the structural system consists of a superstructure, which is 
represented by an inelastic one-degree-of-freedom system, and an elastic soil-pile system 
represented by a footing mass and the Type II model proposed above. It is assumed that the 
properties of the soil-pile system are identical to the model used in the above comparison. For 
simplicity, as an example, the footing is assumed to be free only in the lateral direction, whereas the 
movements of the footing are completely restrained in the rotational and vertical directions. 
Moreover, the inelastic one-degree-of-freedom system supported by the soil-pile system consists of 
a mass and a spring that transfers only the shear force between the footing and the superstructure. It 
is noted, therefore, that the results obtained here would be, to a certain extent, different from those 
obtained under realistic conditions. The equilibrium equation of the total system can be formulated 
as: 
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where su  and fu  are the absolute displacements of the superstructure and the footing, 

respectively; iu2  and 3u  are the absolute displacements of the node in the i th core system and of 

the node at the right hand side of the Type II model, respectively; sm  and fm  are the masses of the 

superstructure and the footing, respectively; and sc  and sk  are the damping coefficient and the 
initial stiffness of the superstructure (pier), respectively. In order to estimate the response of the 
structural system, the absolute displacements are expressed by the sum of the displacements of the 
inertial response and the input motion, as follows: 
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where gU  is the time-history input motion to the inertial system. Substituting Eq. 30 into Eq. 29 

leads to 
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The inelasticity of the superstructure is assumed to be comparable to the Clough model (Clough 
and Johnson (1966)) that is generally used to model reinforced concrete members. The spring of 
the superstructure has a bi-linear skeleton curve where the ratio of the tangent stiffness to the initial 
stiffness is assumed to be 1.0=α . The properties of the model are as follows: the masses of the 

superstructure and footing are 500=sm  t and 200=fm  t, respectively; the spring and dashpot 

coefficients of the superstructure (pier) are 200000=sk  kN/m and 400=sc  kN-sec/m, 
respectively; and the yielding displacement of the superstructure (pier) is 02.0  m. As an 
earthquake wave, Kobe NS (JMA) 1995 shown in Fig. 17 (a) is directly used as the input motion 

gU&&  in Eq. 31, and the effects of input loss (e.g. Fan et al. (1991)) due to the existence of piles in the 

soil are not considered at all in this analysis. Time-history analysis is performed based on Eq. 31 by 
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using Newmark’s β  method ( 61=β ) as a numerical integration scheme, where the time interval 
tΔ  is 002.0  s. Moreover, the modified Newton-Raphson method is applied as a numerical 

iterative procedure for calculating the nonlinear response of the system. The above scheme and 
numerical method are well-known conventional techniques in time-history analysis of structural 
systems. In this analysis, an approximate solution calculated by using the Voigt model to represent 
the impedance function is also shown. The properties of the Voigt model are identical to the 
impedance function at 0≅ω  shown in Fig. 15, and are as follows: the spring coefficient is 
240000  kN/m; and the damping coefficient is 21800  kN-sec/m. 
 The time-history response acceleration of the superstructure ( su&& ) can be estimated as 
shown in Fig. 17 (b). Fig. 17 (c) and (d) show that the displacement of the superstructure relative to 
the footing exceeds the elastic limit ( 02.0  m), and thus, an inelastic response appears in the 
analysis. This indicates that the frequency dependency of the impedance function can be quite 
easily considered in the nonlinear structural analysis by using the conventional numerical 
techniques. The results also show that a discrepancy appears in the responses when compared with 
the case of the Voigt model. This discrepancy occurs due to the frequency-dependent oscillations of 
the impedance function because the Type II model appropriately fits the impedance function, 
whereas the Voigt model is an approximate model that does not consider the frequency-dependent 
oscillations. In the analysis, it is expected that the inelastic response displacement of the pier in the 
case of the Type II model becomes larger than that in the case of the Voigt model. However, the 
amount of this discrepancy should carefully be considered since this example uses simplified 
conditions. At present, therefore, it is concluded that the effects of the frequency-dependent 
characteristics upon the response of inelastic structures may be quantitatively evaluated by using 
the present model with conventional numerical techniques. 

 

 

 

CONCLUSIONS 

 

In the present study, the following may be concluded: 

 

1. A frequency-independent element called “gyro-mass” is proposed. The gyro-mass is defined as 
an independent unit system that generates a reaction force due to the relative acceleration of the 
nodes between which the gyro-mass is placed. A mechanical analogy is also presented for 
explaining the physical feasibility of the element. This element has the potential to generate various 
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types of impedance functions appearing in soil-structure interaction (SSI) problems. Moreover, a 
simple model that consists of the gyro-mass should (a) exhibit independence as a unit impedance 
system, and (b) describe the system in an identical manner to the actual treatment in the structural 
analysis. 

2. Two types of simple models are proposed for simulating impedance functions that have cut-off 
frequencies and the impedance functions that have frequency-dependent oscillations. The model 
that simulates the former is called Type I, and the latter is called Type II. General formulae for these 
models are presented in the frequency domain. Moreover, matrix expressions that can be directly 
applied to conventional structural models are also presented. Rigorous impedance functions of 
single piles, soil reaction and pile groups are simulated by the model with good agreement. In 
addition, generalized models that contain multiple core systems are formulated to enhance the 
precision of the simulation results. The important feature of the present models is that the 
characteristics of the individual parameters are identified so that the fitting of impedance functions 
by using the models is fairly easy.  

3. The proposed models can also simulate the rigorous impedance functions in the time domain. 
Moreover, this study demonstrates an example in which the Type II model is applied to the 
time-history analysis of a soil-pile-superstructure system with an inelastic structural member when 
subjected to an earthquake wave. Conventional numerical techniques can easily be applied to the 
time-history analysis. The present models and also various other types of models consisting of 
gyro-masses can be used to evaluate the effects of the frequency dependency of impedance 
functions upon nonlinear structural systems in advanced research. 

 

 

NOTATION 

The following symbols are used in this paper: 

a  = characteristic length of foundation; 

0a  = dimensionless frequency; 

α  = ratio of tangent stiffness to initial stiffness; 
β  = coefficient appearing in Newmark’s β  method; 

iβ  = ratio of stiffness of i-th core system to base system; 

sβ  = material damping of soil; 

sc  = shear wave velocity of soil; 

d  = diameter of pile; 

D  = damping ratio of soil; 
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pE  = Young’s modulus of pile; 

sE  = Young’s modulus of soil; 

iγ  = dimensionless coefficient of damper; 

H  = length of pile; 

1−=i  = imaginary unit; 

I  = geometrical moment of inertia of pile; 

J  = moment of inertia of disk; 
( )4
dK  = dynamic impedance of 4-pile group; 
( )1
sK  = static stiffness of single pile; 

m  = gyro-mass coefficient; 

ν  = Poisson’s ratio of soil; 

iμ  = dimensionless coefficient of gyro-mass; 

0r  = radius of pile; 

ρ  = ratio of mass density of soil to pile; 

S  = axis-to-axis distance of piles; 

1wS  = real part of normalized impedance function of soil reaction in vertical 
direction; 

2wS  = imaginary part of normalized impedance function of soil reaction in vertical 
direction; 

ω  = circular frequency; 

Y  = dimensionless parameter related to stiffness ratio of soil to pile. 
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FIG.1 Spring-dashpot-mass system proposed by Penzien et al (1964) 
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FIG. 2 Introduction of gyro-mass (a), mechanical analogy of gyro-mass (b), and relation 

between forces and displacements at nodes (c). 
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FIG. 3 Base system (a) and relation between forces and displacements at nodes (b). 
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FIG. 4 Type I model (a) and its core system (b). 
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FIG. 5 Variation of impedance functions with coefficients 0μ  and 0γ  

in base system ( 0.1=K ). 
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FIG. 6 Variation of impedance functions with several values of the coefficient 1γ  in core 
system of Type I model ( 0.1=k  and 0.11 =μ ). (a) Real part (stiffness); (b) imaginary 
part (damping). 
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FIG. 7 Impedance functions of pile in vertical vibration simulated by using Type I 

model ( 1.00 =γ , 00 =μ , 141 =γ , 3001 =μ , 1.01 =β ). Comparison with the rigorous 
solution of Novak and Nogami (1977). 
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FIG. 8 Impedance functions of pile in horizontal vibration simulated by using Type I 

model. Comparison with the rigorous solution of Novak and Nogami (1977).  
(a) 3.00 =γ , 5.00 =μ , 151 =γ , 4001 =μ , 13.01 =β ; (b) 00 =γ , 55.00 =μ , 151 =γ , 

4001 =μ , 13.01 =β , 52 =γ , 502 =μ , 06.02 =β . 
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FIG. 9 Generalized Type I model. 

 
 
 
 
 
 
 

1f

1u

3f

3u

M
C

K

21u
21f

1m

1c

1k

22u
22f

2m

2c

2k



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG.10 Type II model (a) and its core system (b) 
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FIG. 11 Variation of impedance functions with several values of the coefficient 1γ  in 
core system of Type II model ( 0.1=k  and 0.11 =μ ).  

(a) Real part (stiffness); and (b) imaginary part (damping). 
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FIG. 12 Normalized impedance functions of soil reaction in horizontal vibration 
(Poisson’s ratio ν =0.25 and 0.40) and in vertical vibration (real part 1wS  and 
imaginary part 2wS ) , showing (a) real part, and (b) imaginary part simulated by using 
Type II model. Comparison with the rigorous solution of Novak (1974) is also shown. 
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FIG. 13 Normalized horizontal impedance functions of a 2×2 pile group simulated by 
using Type II model ((a) and (b): single core system, (c) and (d): double core system). 
Comparison with the rigorous solution of Kaynia and Kausel (1982). (Imaginary part 
of the impedance is divided by the dimensionless frequency 0a ; ( )4

dK  is the dynamic 
impedance of a 4-pile group; ( )1

sK  is the static stiffness of a single pile.) 
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FIG. 14 Generalized Type II model. 
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FIG. 15 Impedance functions of pile group in horizontal vibration ( 10=dS ) simulated 
by using Type II model in frequency domain compared with the numerical solution of 
time-history analysis. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG. 16 Numerical model as application example of proposed model 
to nonlinear structural system. 
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FIG. 17 Time-history responses of inelastic structural system. (a) Input motion (Kobe, 

JMA 1995); (b) Response acceleration of superstructure; (c) Relative displacement 
between superstructure and footing; (d) Hysteresis loop of superstructure (pier). 
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TABLE 1. Dimensionless coefficients of simple models simulating impedance 
functions of soil reaction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Horizontal Vertical 

coefficient 25.0=ν  40.0=ν  1wS  and 2wS  

 sGK  10.2  40.2  50.1  

0γ  20.4  40.4  30.4  

0μ  00.0  00.0  00.0  

1β  80.0  70.0  80.0  

1γ  50.6  00.8  00.5  

1μ  00.1  00.1  00.1  



 
 
 

TABLE 2. Dimensionless coefficients of simple models simulating impedance 
functions of a 2x2 pile group 

 
 

 Single core systems Double core systems 

coefficient 2=dS  5=dS  10=dS 2=dS  5=dS  10=dS
( )14 sKK  45.0  60.0  73.0  45.0  60.0  73.0  

0γ  70.2  10.1  00.1  70.2  20.1  18.0  

0μ  00.1  00.1  40.1  00.1  00.1  30.1  

1β  10.0  80.1  90.0  10.0  40.0  94.0  

1γ  00.6  30.1  00.4  00.6  60.0  00.4  

1μ  00.1  90.1  00.8  00.1  30.2  00.8  

2β  - - - 00.0  20.1  00.1  

2γ  - - - 00.0  80.1  60.0  

2μ  - - - 00.0  50.2  95.0  
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